找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Boltzmann Method; Fundamentals and Eng A. A. Mohamad Book 20111st edition The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
樓主: 充裕
31#
發(fā)表于 2025-3-26 23:13:33 | 只看該作者
The Diffusion Equation,as a first derivative in time, the diffusion is one directional in time, in other words, the diffusion at any point depends on the previous time and no information can be transferred from the future time. Also, it requires an initial condition to solve Eq.?..
32#
發(fā)表于 2025-3-27 03:12:19 | 只看該作者
Non-Isothermal Incompressible Fluid Flow,ight and 120?cm in length. The inlet temperature and velocity of the water are 20°C and 0.006?m/s, respectively. The channel walls are kept at 80°C. Determine the velocity and temperature profiles and rate of heat transfer. Assume that the width of the channel is unity.
33#
發(fā)表于 2025-3-27 08:12:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:32:53 | 只看該作者
,Advection–Diffusion Problems,In this chapter, the physics of advection and advection diffusion will be explained. Lattice Boltzmann method will be discussed for solving different advection–diffusion problems for one and two dimensional cases. Extending the method to three dimension problems is straightforward.
35#
發(fā)表于 2025-3-27 17:25:58 | 只看該作者
36#
發(fā)表于 2025-3-27 18:55:45 | 只看該作者
Multi-Relaxation Schemes,Single relaxation scheme is extensively discussed and many problems were solved in the previous chapters. There is a claim that multi-relaxation schemes offer a higher stability and accuracy than the single relaxation scheme. This chapter is devoted to explain the multi-relaxation-time scheme.
37#
發(fā)表于 2025-3-27 22:02:01 | 只看該作者
38#
發(fā)表于 2025-3-28 05:09:45 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 09:24:55 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 12:04:32 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大方县| 都匀市| 广安市| 焉耆| 千阳县| 邯郸县| 深州市| 繁昌县| 贵州省| 新化县| 昭通市| 宜都市| 嘉兴市| 安吉县| 景洪市| 资阳市| 乌拉特后旗| 通许县| 阿瓦提县| 天柱县| 兰西县| 会理县| 四子王旗| 甘谷县| 上犹县| 伊宁市| 武汉市| 思茅市| 探索| 肥东县| 武山县| 诏安县| 左贡县| 高阳县| 永顺县| 遵义县| 固原市| 正蓝旗| 婺源县| 余江县| 东海县|