找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Random Matrices: Lectures on Macroscopic Asymptotics; école d‘été de Proba Alice Guionnet Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: AMUSE
21#
發(fā)表于 2025-3-25 07:16:22 | 只看該作者
22#
發(fā)表于 2025-3-25 11:23:53 | 只看該作者
23#
發(fā)表于 2025-3-25 13:07:53 | 只看該作者
Concentration inequalities for random matricesf random matrices. To this end, we shall first study the regularity of the eigenvalues of matrices as a function of their entries (since the idea will be to apply concentration inequalities to the entries of the random matrices and then see the eigenvalues as nice functions of these entries).
24#
發(fā)表于 2025-3-25 18:40:18 | 只看該作者
25#
發(fā)表于 2025-3-25 22:12:15 | 只看該作者
26#
發(fā)表于 2025-3-26 02:55:10 | 只看該作者
Large deviations for the law of the spectral measure of Gaussian Wigner’s matricesumber ?. Here, ?(?) = ?.(?. ? ?. )..When .(x) = 4.?x., we have seen in Lemma IV that . is the law of the eigenvalues of an . ×. GOE (resp. GUE, resp GSE) matrix when ? = 1 (resp. ? = 2, resp. ? = 4). The case ? = 4 corresponds to another matrix ensemble, namely the GSE. In view of these remarks and
27#
發(fā)表于 2025-3-26 06:56:33 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:51 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:49 | 只看該作者
30#
發(fā)表于 2025-3-26 17:09:07 | 只看該作者
Maps and Gaussian calculusWe start this chapter by introducing non-commutative polynomials and their relations with special vertices called stars. We then relate the enumeration of the maps buildt upon such vertices with the formal expansion of Gaussian matrix integrals.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五大连池市| 都兰县| 灵川县| 定结县| 营山县| 称多县| 商城县| 东乡| 华坪县| 仁寿县| 南陵县| 台湾省| 镇江市| 沙湾县| 包头市| 林州市| 韶山市| 青海省| 长葛市| 金山区| 临湘市| 吴桥县| 当涂县| 佛山市| 息烽县| 江永县| 邵东县| 襄汾县| 葫芦岛市| 丰台区| 个旧市| 连城县| 金山区| 方城县| 黑水县| 台南市| 高尔夫| 乌兰浩特市| 昌黎县| 孟津县| 榆树市|