找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Order Perturbation Theory and Summation Methods in Quantum Mechanics; G. A. Arteca,F. M. Fernández,E. A. Castro Book 1990 Springer-V

[復(fù)制鏈接]
樓主: 兇惡的老婦
21#
發(fā)表于 2025-3-25 09:15:15 | 只看該作者
Lecture Notes in Chemistryhttp://image.papertrans.cn/l/image/581344.jpg
22#
發(fā)表于 2025-3-25 15:19:01 | 只看該作者
23#
發(fā)表于 2025-3-25 17:38:45 | 只看該作者
24#
發(fā)表于 2025-3-25 21:05:44 | 只看該作者
The Semiclassical Approximation and the JWKB Methodmethods to obtain eigenfunctions, eigenvalues and expectation values of observables. The semiclassical methods make up a very valuable tool to get such information and their origin can be traced back to the birth of Quantum Mechanics. A renew interest has arisen during the last 20 years and today they have a remarkable relevance and currentness.
25#
發(fā)表于 2025-3-26 03:14:57 | 只看該作者
Geometrical Connection Between the VFM and the JWKB Methodcal relationships, and the Heisenberg inequalities or the de Broglie hypothesis. It has been shown that all these approximations lead to eigenvalues depending on quantum numbers and parameters contained within the Hamiltonian, similarly to those obtained via the JWKB method and the variational theorem /1–13/ (see Chapter VI).
26#
發(fā)表于 2025-3-26 05:43:41 | 只看該作者
27#
發(fā)表于 2025-3-26 09:55:59 | 只看該作者
Rayleigh-Schrodinger Perturbation Theory (RSPT)We devote this Section to present RSPT in a way appropriate to our specific needs. There are several alternative manners to introduce this formalism which can be found in the standard literature /1–3/.
28#
發(fā)表于 2025-3-26 14:33:51 | 只看該作者
Divergence of the Perturbation SeriesThe RSPT (Chapter III) allows one to get an approximation to the eigenvalues (E.) of a given Hamiltonian operator through a series in powers of a real parameter λ. However, the usefulness of the power series is conditioned by a fundamental question: its convergence.
29#
發(fā)表于 2025-3-26 18:52:39 | 只看該作者
30#
發(fā)表于 2025-3-26 21:49:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广饶县| 临泉县| 乌兰察布市| 手游| 什邡市| 苍梧县| 桃园市| 山西省| 洛隆县| 德阳市| 阜城县| 长武县| 吉首市| 彰武县| 孝昌县| 丰台区| 萝北县| 惠水县| 柳江县| 榆社县| 苍山县| 巢湖市| 邵阳市| 林口县| 金华市| 滁州市| 枣庄市| 昌图县| 大宁县| 准格尔旗| 咸宁市| 边坝县| 屏山县| 鄱阳县| 南安市| 海城市| 西乌珠穆沁旗| 三亚市| 晋宁县| 平武县| 樟树市|