找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Deviations and Asymptotic Methods in Finance; Peter K. Friz,Jim Gatheral,Josef Teichmann Conference proceedings 2015 Springer Intern

[復(fù)制鏈接]
樓主: SORB
41#
發(fā)表于 2025-3-28 16:00:55 | 只看該作者
,A Remark on Gatheral’s ‘Most-Likely Path Approximation’ of Implied Volatility,We give a new proof of the representation of implied volatility as a time-average of weighted expectations of local or stochastic volatility. With this proof we clarify the question of existence of ‘forward implied variance’ in the original derivation of Gatheral, who introduced this representation in his book ‘The Volatility Surface’.
42#
發(fā)表于 2025-3-28 22:12:27 | 只看該作者
On Small Time Asymptotics for Rough Differential Equations Driven by Fractional Brownian Motions,We survey existing results concerning the study in small times of the density of the solution of a rough differential equation driven by fractional Brownian motions. We also slightly improve existing results and discuss some possible applications to mathematical finance.
43#
發(fā)表于 2025-3-29 02:54:52 | 只看該作者
On Singularities in the Heston Model,In this note we provide characterization of the singularities of the Heston characteristic function. In particular, we show that all the singularities are pure imaginary.
44#
發(fā)表于 2025-3-29 06:04:06 | 只看該作者
Small-Time Asymptotics for the At-the-Money Implied Volatility in a Multi-dimensional Local Volatil, [.]) derived highly accurate analytic formulas for prices and implied volatilities of such options when the options are not at the money. We now extend these results to the ATM case. Moreover, we also derive similar formulas for the local volatility of the basket.
45#
發(fā)表于 2025-3-29 08:14:04 | 只看該作者
,Extrapolation Analytics for Dupire’s Local Volatility,ses our approximation formula from a practical and numerical perspective, the present paper focuses on rigorous proofs of the approximations. We apply the saddle point method (Heston model) and Hankel contour integration (variance gamma model).
46#
發(fā)表于 2025-3-29 12:24:10 | 只看該作者
47#
發(fā)表于 2025-3-29 18:44:23 | 只看該作者
48#
發(fā)表于 2025-3-29 21:21:48 | 只看該作者
49#
發(fā)表于 2025-3-30 01:44:37 | 只看該作者
50#
發(fā)表于 2025-3-30 07:53:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新余市| 沾化县| 大厂| 长宁县| 古田县| 岚皋县| 瓦房店市| 成安县| 博爱县| 万载县| 千阳县| 镇雄县| 旅游| 天峨县| 海兴县| 安西县| 安仁县| 榆林市| 德州市| 花莲县| 隆安县| 托里县| 江都市| 临沧市| 崇阳县| 连云港市| 密云县| 保靖县| 潼南县| 寿宁县| 三河市| 申扎县| 舒兰市| 江门市| 青浦区| 宜都市| 汝南县| 湖口县| 尉氏县| 枝江市| 呼伦贝尔市|