找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Language, Logic, and Mathematics in Schopenhauer; Jens Lemanski Book 2020 Springer Nature Switzerland AG 2020 History of Mathematics.Philo

[復(fù)制鏈接]
樓主: 照相機(jī)
51#
發(fā)表于 2025-3-30 11:26:22 | 只看該作者
Schopenhauer’s Perceptive Invectiveful consideration: they are rooted in Schopenhauer’s philosophy of language, which itself reflects the structure of his metaphysics. This short chapter argues that Schopenhauer’s vitriol rewards philosophical attention; not because it expresses his critical take on Fichte, Hegel, Herbart, Schelling,
52#
發(fā)表于 2025-3-30 16:18:59 | 只看該作者
Schopenhauer’s Eulerian Diagramsams in his Berlin Lectures that have not been published until 1913. These works are seldom mentioned in logic diagrams literature. This paper surveys and assesses Schopenhauer’s diagrams and the extent to which they conform to the scholarship of his time. It is shown that Schopenhauer adopted a sche
53#
發(fā)表于 2025-3-30 18:23:58 | 只看該作者
54#
發(fā)表于 2025-3-30 22:20:07 | 只看該作者
Arthur Schopenhauer on Naturalness in Logicion is intensively discussed on the basis of Aristotelian syllogistics. On the other hand, research on “natural logic” is concerned with the implicitly existing logical laws of natural language, and is therefore also interested in the naturalness of syllogistics. In both research areas, the question
55#
發(fā)表于 2025-3-31 04:16:25 | 只看該作者
Schopenhauer and the Equational Form of Predicationhauer invokes an equation sign to express relations of predication as in “A = B”. The present paper proposes an assessment of Schopenhauer’s use of the equation sign. Departing from an analysis of Schopenhauer’s account of concepts and judgments, it offers a survey of logic textbooks which Schopenha
56#
發(fā)表于 2025-3-31 06:52:52 | 只看該作者
From Euler Diagrams in Schopenhauer to Aristotelian Diagrams in Logical Geometryometry. One can define the Aristotelian relations in a very general fashion (relative to arbitrary Boolean algebras), which allows us to define not only Aristotelian diagrams for ., but also for .. I show that, once this generalization has been made, each of Schopenhauer’s concrete Euler diagrams ca
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛阳市| 凌海市| 东乡族自治县| 乐安县| 巍山| 高淳县| 常熟市| 黎城县| 内江市| 怀来县| 灵山县| 正定县| 新建县| 岳西县| 天门市| 华池县| 崇礼县| 吴江市| 昔阳县| 贵溪市| 大英县| 潞城市| 肇东市| 肥西县| 林州市| 沐川县| 金乡县| 黔江区| 邻水| 竹北市| 界首市| 龙井市| 崇义县| 鲁山县| 南昌县| 庆云县| 北流市| 海阳市| 淅川县| 邹城市| 辉南县|