找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Language and Illumination; Studies in the Histo S. Morris Engel Book 1969 Springer Netherlands 1969 Friedrich Nietzsche.Immanuel Kant.John

[復制鏈接]
樓主: Reagan
31#
發(fā)表于 2025-3-26 21:44:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:38:34 | 只看該作者
On the “Composition” of the Critique: A Brief Commente subject in his writings. Of the former the two most important items are his letters to Mendelssohn (dated August 16th, 1783) and Garve (dated August 7th, 1783); of the latter the most significant item is the account he gives of its composition in the Preface to the First Edition (A xviii). But des
33#
發(fā)表于 2025-3-27 05:36:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:28:43 | 只看該作者
sics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
35#
發(fā)表于 2025-3-27 17:02:01 | 只看該作者
Examples include geodesics, harmonic functions, complex analytic mappings between suitable (e.g. Miller) manifolds, the Gauss maps of constant mean curvature surfaces, and harmonic morphisms, these last being maps which preserve Laplace’s equation. The Euler-Lagrange equations for a harmonic map (th
36#
發(fā)表于 2025-3-27 20:31:27 | 只看該作者
37#
發(fā)表于 2025-3-28 00:54:12 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:52 | 只看該作者
S. Morris Engelsics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
39#
發(fā)表于 2025-3-28 08:21:53 | 只看該作者
sics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
40#
發(fā)表于 2025-3-28 13:06:23 | 只看該作者
S. Morris Engelsics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
奉新县| 嘉黎县| 汪清县| 连平县| 定陶县| 光泽县| 玉林市| 呼伦贝尔市| 武宁县| 浮梁县| 康乐县| 包头市| 徐闻县| 手游| 泽州县| 蕲春县| 道真| 讷河市| 漳平市| 遂溪县| 正安县| 阿图什市| 肥西县| 灵山县| 普兰县| 观塘区| 孝义市| 如东县| 河源市| 大姚县| 清河县| 霍林郭勒市| 新郑市| 安远县| 昌都县| 营山县| 安岳县| 晋中市| 赣州市| 嘉善县| 龙岩市|