找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN‘98: Theoretical Informatics; Third Latin American Cláudio L. Lucchesi,Arnaldo V. Moura Conference proceedings 1998 Springer-Verlag Be

[復制鏈接]
樓主: negation
21#
發(fā)表于 2025-3-25 12:59:28 | 只看該作者
22#
發(fā)表于 2025-3-25 19:42:16 | 只看該作者
23#
發(fā)表于 2025-3-25 22:12:19 | 只看該作者
24#
發(fā)表于 2025-3-26 02:22:45 | 只看該作者
Faster non-linear parametric search with applications to optimization and dynamic geometry,tion on weighted graphs and to two problems in dynamic geometry on points moving in straight-line trajectories: computing the minimum diameter over all time and finding the time at which the length of the maximum spanning tree is minimized.
25#
發(fā)表于 2025-3-26 06:38:28 | 只看該作者
26#
發(fā)表于 2025-3-26 11:52:16 | 只看該作者
An Eilenberg theorem for words on countable ordinals,emigroup, is an adaptation of the one used in the theory of regular languages of Ω-words. We show that finite Ω.-semigroups are equivalent to automata. In particular, the proof gives a new algorithm for determinizing automata on countable ordinals. As in the cases of finite and Ω-words, a syntactic
27#
發(fā)表于 2025-3-26 14:14:41 | 只看該作者
Maximal groups in free Burnside semigroups,tisfying . .=1. We show that such group is free over a well described set of generators whose cardinality is the cyclomatic number of a graph associated to the ?-class containing the group. For .=2 and for every . ≥ 2 we present examples with 2.?1 generators. Hence, in these cases, we have infinite
28#
發(fā)表于 2025-3-26 20:23:13 | 只看該作者
Positive varieties and infinite words, this paper, we extend this theory for classes of languages that are closed under union and intersection, but not necessarily under complement. As an example, we give a purely algebraic characterization of various classes of recognizable sets defined by topological properties (open, closed, . . and
29#
發(fā)表于 2025-3-26 22:10:25 | 只看該作者
30#
發(fā)表于 2025-3-27 03:05:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阜新市| 五莲县| 石屏县| 张家口市| 长武县| 方山县| 鹿泉市| 台东县| 汕尾市| 卢氏县| 玉山县| 淮阳县| 常宁市| 五大连池市| 十堰市| 马边| 满洲里市| 酒泉市| 凤庆县| 江永县| 西乌珠穆沁旗| 连山| 英山县| 加查县| 枣强县| 阜新市| 翁牛特旗| 苍梧县| 藁城市| 弋阳县| 通海县| 呼图壁县| 博兴县| 镇雄县| 宣汉县| 宜兰县| 佛冈县| 镇康县| 阆中市| 洛浦县| 和林格尔县|