找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN 2014: Theoretical Informatics; 11th Latin American Alberto Pardo,Alfredo Viola Conference proceedings 2014 Springer-Verlag Berlin He

[復制鏈接]
樓主: Encomium
51#
發(fā)表于 2025-3-30 11:49:42 | 只看該作者
52#
發(fā)表于 2025-3-30 13:27:29 | 只看該作者
A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clustersime and expected .(.) space, which considerably improves previous results. Our technique efficiently handles non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions.
53#
發(fā)表于 2025-3-30 17:33:46 | 只看該作者
Smooth Orthogonal Drawings of Planar Graphsraph has an SC.-layout. On the negative side, we demonstrate an infinite family of biconnected 4-planar graphs that require exponential area for an SC.-layout. Finally, we present an infinite family of biconnected 4-planar graphs that do not admit an SC.-layout.
54#
發(fā)表于 2025-3-30 23:21:42 | 只看該作者
55#
發(fā)表于 2025-3-31 03:31:16 | 只看該作者
56#
發(fā)表于 2025-3-31 06:29:55 | 只看該作者
Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs Having Clique having size at least 3?[J. Algorithms 45 (2002), 40–54], proving that it is a .-complete problem. We then determine a hierarchy of nested subclasses of perfect graphs with all cliques having size at least 3 whereby each graph class is in a distinct complexity class, namely .-complete, .-complete, and ..
57#
發(fā)表于 2025-3-31 10:21:25 | 只看該作者
58#
發(fā)表于 2025-3-31 15:53:22 | 只看該作者
59#
發(fā)表于 2025-3-31 17:36:24 | 只看該作者
Conference proceedings 2014y, in March/April 2014. The 65 papers presented together with 5 abstracts were carefully reviewed and selected from 192 submissions. The papers address a variety of topics in theoretical computer science with a certain focus on complexity, computational geometry, graph drawing, automata, computabili
60#
發(fā)表于 2025-4-1 00:01:05 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 02:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
海南省| 婺源县| 茌平县| 屯门区| 小金县| 新密市| 青阳县| 林西县| 怀宁县| 夹江县| 巢湖市| 镇康县| 义马市| 海盐县| 乐山市| 武邑县| 卫辉市| 车险| 湘潭市| 正镶白旗| 瑞安市| 绥中县| 慈利县| 平和县| 阿坝县| 哈密市| 晋城| 苏尼特右旗| 新乐市| 东平县| 咸阳市| 当涂县| 蒙阴县| 嵩明县| 平阳县| 庄河市| 南城县| 邵东县| 全州县| 红桥区| 天峨县|