找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN 2002: Theoretical Informatics; 5th Latin American S Sergio Rajsbaum Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 200

[復(fù)制鏈接]
樓主: lumbar-puncture
41#
發(fā)表于 2025-3-28 17:07:28 | 只看該作者
42#
發(fā)表于 2025-3-28 21:01:53 | 只看該作者
43#
發(fā)表于 2025-3-29 00:42:32 | 只看該作者
Beta-Expansions for Cubic Pisot Numbers? a < β ., called the beta-shift. This dynamical system is characterized by the beta-expansion of 1; in particular, it is of finite type if and only if ..(1) is finite; β is then called a simple beta-number..We first compute the beta-expansion of 1 for any cubic Pisot number. Next we show that cubic simple beta-numbers are Pisot numbers.
44#
發(fā)表于 2025-3-29 05:51:16 | 只看該作者
A Deterministic Polynomial Time Algorithm for Heilbronn’s Problem in Dimension Threethe unit square [0, 1]. where all triangles have area at least ω(log ./..). Here we will consider a 3-dimensional analogue of this problem and we will give a deterministic polynomial time algorithm which finds . points in the unit cube [0, 1]. such that the volume of every tetrahedron among these . points is at least ω(log ./..).
45#
發(fā)表于 2025-3-29 08:39:30 | 只看該作者
46#
發(fā)表于 2025-3-29 14:26:08 | 只看該作者
Testing and Checking of Finite State Systemsite state achines. Conformance testing of deter inistic achines has been investigated for a long time; we will discuss various efficient ethods. Testing of nondeter inistic and probabilistic achines is related to games with incomplete infor ation and to partially observable Markov decisions processes.
47#
發(fā)表于 2025-3-29 17:29:02 | 只看該作者
48#
發(fā)表于 2025-3-29 21:19:27 | 只看該作者
49#
發(fā)表于 2025-3-30 00:18:53 | 只看該作者
50#
發(fā)表于 2025-3-30 04:46:47 | 只看該作者
Algorithms for Local Alignment with Length Constraints*ger Δ. The algorithm runs in time . (.Δ) using . (.Δ) space. We also introduce the . problem and show how our idea can be applied to this case as well. This is a dual approach to the well-known cyclic edit distance problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇仁县| 凌海市| 泊头市| 江川县| 大方县| 元氏县| 宜君县| 两当县| 柳林县| 镇江市| 湖州市| 清原| 岚皋县| 临江市| 平乡县| 隆子县| 和林格尔县| 枣庄市| 曲水县| 灌南县| 荃湾区| 沙坪坝区| 宜城市| 黔南| 温泉县| 五指山市| 德清县| 德庆县| 库车县| 阿荣旗| 会东县| 灵台县| 民县| 东辽县| 凌海市| 武鸣县| 岱山县| 通许县| 嫩江县| 根河市| 广饶县|