找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: L2-Invariants: Theory and Applications to Geometry and K-Theory; Wolfgang Lück Book 2002 Springer-Verlag Berlin Heidelberg 2002 Algebraic

[復(fù)制鏈接]
樓主: ARSON
41#
發(fā)表于 2025-3-28 16:57:33 | 只看該作者
Middle Algebraic ,-Theory and ,-Theory of von Neumann Algebras, algebra. We will explain the decomposition of a von Neumann algebra into different types. Any group von Neumann algebra is a finite von Neumann algebra. A lot of the material of the preceding chapters can be extended from group von Neumann algebras to finite von Neumann algebras as explained in Sub
42#
發(fā)表于 2025-3-28 18:49:45 | 只看該作者
43#
發(fā)表于 2025-3-29 00:40:32 | 只看該作者
44#
發(fā)表于 2025-3-29 06:53:22 | 只看該作者
https://doi.org/10.1007/978-3-662-04687-6Algebraic K-theory; Algebraic topology; Area; K-Theory; L2-Invariants; Volume; topology
45#
發(fā)表于 2025-3-29 10:26:37 | 只看該作者
46#
發(fā)表于 2025-3-29 13:15:05 | 只看該作者
,,-Betti Numbers,In this chapter we introduce and study ..-(co-)homology and ..-Betti numbers for Hilbert chain complexes and for regular coverings of .-complexes of finite type or of compact manifolds.
47#
發(fā)表于 2025-3-29 18:19:16 | 只看該作者
Novikov-Shubin Invariants,In this chapter we introduce and study Novikov-Shubin invariants for Hilber chain complexes and for regular coverings of .-complexes of finite type o of compact manifolds.
48#
發(fā)表于 2025-3-29 23:04:23 | 只看該作者
49#
發(fā)表于 2025-3-30 00:59:29 | 只看該作者
Applications to Groups,In this chapter we apply the results of Chapter 6 to questions about group theory, mainly about deficiency and Euler characteristic.
50#
發(fā)表于 2025-3-30 07:38:33 | 只看該作者
The Singer Conjecture,This chapter is devoted to the following conjecture (see [477] and also [146, Conjecture 2]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
义马市| 宜章县| 江达县| 大化| 扬州市| 文登市| 建平县| 鄂托克旗| 卢湾区| 锦屏县| 利辛县| 定州市| 水城县| 南康市| 吉隆县| 福安市| 洛南县| 庆元县| 九龙县| 徐州市| 梁平县| 昌吉市| 石狮市| 华蓥市| 视频| 海伦市| 乐陵市| 九龙县| 镇巴县| 黔南| 喀喇沁旗| 灵宝市| 苍梧县| 梧州市| 姚安县| 额敏县| 木兰县| 明溪县| 全南县| 清流县| 大丰市|