找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Kongruentes Policy-Lernen als lernbedingter Policy-Wandel; Zum Koordinierungsme Sandra Plümer Book 2024 Der/die Herausgeber bzw. der/die Au

[復(fù)制鏈接]
樓主: fallacy
31#
發(fā)表于 2025-3-26 22:22:35 | 只看該作者
32#
發(fā)表于 2025-3-27 02:41:02 | 只看該作者
33#
發(fā)表于 2025-3-27 08:07:05 | 只看該作者
ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
34#
發(fā)表于 2025-3-27 12:17:48 | 只看該作者
ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
35#
發(fā)表于 2025-3-27 17:33:52 | 只看該作者
Sandra Plümerble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
36#
發(fā)表于 2025-3-27 21:19:08 | 只看該作者
Sandra Plümerf smooth manifolds. In particular, it can be used to compare those aspects of field theories (e.g. of classical (Newtonian) mechanics, hydrodynamics, electrodynamics, relativity theory, classical Yang-Mills theory and so on) that are described by such equations..Employing a geometric (jet space) app
37#
發(fā)表于 2025-3-28 00:06:53 | 只看該作者
Sandra Plümeralgebras of two modules in that class implies that the modules are isomorphic. A class satisfies a Jacobson radical isomorphism theorem if an isomorphism between only the Jacobson radicals of the endomorphism rings of two modules in that class implies that the modules are isomorphic. Jacobson radica
38#
發(fā)表于 2025-3-28 03:44:15 | 只看該作者
39#
發(fā)表于 2025-3-28 07:15:47 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清徐县| 东阳市| 双桥区| 北宁市| 孝感市| 南丹县| 瑞昌市| 灌阳县| 神木县| 嘉兴市| 台州市| 黎平县| 霍林郭勒市| 哈尔滨市| 屯门区| 介休市| 崇阳县| 手游| 托里县| 襄垣县| 尚志市| 民县| 安庆市| 民县| 东宁县| 庐江县| 桐柏县| 黄冈市| 乐平市| 长岭县| 凌源市| 大兴区| 本溪| 南澳县| 霍邱县| 清水河县| 本溪| 肇源县| 太白县| 大连市| 东明县|