找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kompaktkurs Finite Elemente für Einsteiger; Theorie und Beispiel Manfred Hahn,Michael Reck Textbook 20181st edition Springer Fachmedien Wie

[復(fù)制鏈接]
樓主: ALLY
21#
發(fā)表于 2025-3-25 04:53:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:35:35 | 只看該作者
http://image.papertrans.cn/k/image/544782.jpg
23#
發(fā)表于 2025-3-25 15:09:03 | 只看該作者
Numerische Integration,Für die computergestützte FE-Berechnung werden die Integralterme der schwachen Form nach Einsetzen der Ansatzfunktionen nicht analytisch, sondern numerisch Integriert. Die hierbei verwendete Gauss-Integration wird im vorliegenden Kapitel erl?utert, und die Anwendung auf ein- und mehrdimensionale Gebiete vorgestellt.
24#
發(fā)表于 2025-3-25 16:25:44 | 只看該作者
25#
發(fā)表于 2025-3-25 23:00:08 | 只看該作者
26#
發(fā)表于 2025-3-26 01:01:15 | 只看該作者
Mathematische Grundlagen der FEM,dprobleme über ein Potential beschrieben werden k?nnen, und zweitens, dass die Minimierung dieses Potentials gerade die L?sung des Feldproblems liefert. Das Ziel dieses Kapitels ist es, zum einen die L?sung dieser Minimierungsaufgabe herzuleiten und zum anderen, diese anschlie?end auf Probleme zu er
27#
發(fā)表于 2025-3-26 05:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 08:53:37 | 只看該作者
Finite-Elemente-Formulierung,onnen wird. Diese Form hat den Vorteil, dass sie nach der Auswertung der Integrale in der schwachen Form auf eine Vektor-Matrix-Formulierung führt, die mithilfe von Computern effizient gel?st werden kann. Das Vorgehen für das Einsetzen der Ansatzfunktionen in die schwache Form wird in diesem Kapitel
29#
發(fā)表于 2025-3-26 13:08:04 | 只看該作者
30#
發(fā)表于 2025-3-26 19:21:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨野县| 太保市| 通海县| 瑞昌市| 威远县| 徐汇区| 霍林郭勒市| 寻乌县| 孝义市| 甘泉县| 阜南县| 沽源县| 武冈市| 万盛区| 二手房| 道孚县| 乾安县| 屯昌县| 涞源县| 南京市| 咸丰县| 密云县| 寿宁县| 吉首市| 桃园市| 桦南县| 宁津县| 吐鲁番市| 仙游县| 乐昌市| 洛宁县| 德化县| 黑山县| 蛟河市| 集贤县| 宁化县| 陵川县| 安图县| 肇源县| 房产| 蓬溪县|