找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kolmogorov Operators and Their Applications; Stéphane Menozzi,Andrea Pascucci,Sergio Polidoro Conference proceedings 2024 The Editor(s) (i

[復制鏈接]
樓主: 決絕
21#
發(fā)表于 2025-3-25 04:44:12 | 只看該作者
22#
發(fā)表于 2025-3-25 10:33:07 | 只看該作者
Hypocoercivity Methods for Kinetic Fokker-Planck Equations with Factorised Gibbs States,es the Fokker-Planck and the transport operators. Rates of convergence in presence of a global equilibrium, or decay rates otherwise, are estimated either by the corresponding rates in the diffusion limit, or by the rates of convergence to local equilibria, under moment conditions. On the basis of t
23#
發(fā)表于 2025-3-25 13:36:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:49 | 只看該作者
25#
發(fā)表于 2025-3-25 21:28:16 | 只看該作者
26#
發(fā)表于 2025-3-26 01:26:00 | 只看該作者
About the Regularity of Degenerate Non-local Kolmogorov Operators Under Diffusive Perturbations,ither local or non-local. More precisely, we establish that some estimates, such as the Schauder and Sobolev ones, already known for the non-perturbed operator still hold, and with the same constants, when we perturb the Ornstein-Uhlenbeck operator with second order diffusions with coefficients only
27#
發(fā)表于 2025-3-26 07:05:13 | 只看該作者
28#
發(fā)表于 2025-3-26 08:52:42 | 只看該作者
On Averaged Control and Iteration Improvement for a Class of Multidimensional Ergodic Diffusions,ith variable diffusion and drift coefficients both depending on control; the diffusion coefficient must be a scalar function. The convergence of Howard’s iterative reward improvement algorithm to the unique solution of Bellman’s equation is also established.
29#
發(fā)表于 2025-3-26 13:41:41 | 只看該作者
Conference proceedings 2024 arise in several research fields...This volume collects a selection of the talks given at the Cortona meeting by experts in both fields, who presented the most recent developments of the theory. Particular emphasis has been given to degenerate partial differential equations, It? processes, applicat
30#
發(fā)表于 2025-3-26 18:31:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
曲水县| 静海县| 远安县| 应用必备| 乐安县| 南木林县| 宿迁市| 和政县| 承德市| 兴业县| 巴楚县| 栖霞市| 铜山县| 枣庄市| 宁蒗| 巴南区| 乐都县| 南漳县| 讷河市| 德昌县| 英吉沙县| 林甸县| 宿迁市| 东海县| 普格县| 加查县| 蒙山县| 金门县| 江安县| 黄梅县| 蚌埠市| 娱乐| 绥化市| 普定县| 遂溪县| 永丰县| 克东县| 安化县| 合肥市| 青冈县| 新邵县|