找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[復(fù)制鏈接]
樓主: Ford
31#
發(fā)表于 2025-3-26 23:07:46 | 只看該作者
32#
發(fā)表于 2025-3-27 03:15:50 | 只看該作者
Multi-level and?Multi-interest User Interest Modeling for?News Recommendations the minimum interest modeling unit when modeling user’s interests. They ignored the low-level and high-level signals from user’s behaviors. In this paper, we propose a news recommendation method combined with multi-level and multi-interest user interest modeling, named MMRN. In contrast to existin
33#
發(fā)表于 2025-3-27 07:09:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:26:16 | 只看該作者
35#
發(fā)表于 2025-3-27 15:45:45 | 只看該作者
36#
發(fā)表于 2025-3-27 21:38:30 | 只看該作者
A 2D Entity Pair Tagging Scheme for Relation Triplet Extractiondes, extensive experiments on two public datasets widely used by many researchers are conducted, and the experimental results perform better than the state-of-the-art baselines overall and deliver consistent performance gains on complex scenarios of various overlapping patterns and multiple triplets
37#
發(fā)表于 2025-3-28 00:28:21 | 只看該作者
MAGNN-GC: Multi-head Attentive Graph Neural Networks with?Global Context for?Session-Based Recommendssion items with the learned global-level and local-level item embeddings using the multi-head attention mechanism. Additionally, we use the focal loss as a loss function to adjust sample weights and address the problem of imbalanced positive and negative samples during model training. Our experimen
38#
發(fā)表于 2025-3-28 03:07:31 | 只看該作者
Chinese Relation Extraction with?Bi-directional Context-Based Lattice LSTMention semantic interaction-enhanced (CSI) classifier promotes exchange of semantic information between hidden states from forward and backward perspectives for more comprehensive representations of relation types. In experiments conducted on two public datasets from distinct domains, our method yie
39#
發(fā)表于 2025-3-28 09:39:21 | 只看該作者
40#
發(fā)表于 2025-3-28 12:24:23 | 只看該作者
Debiased Contrastive Loss for?Collaborative Filteringof our methods in automatically mining the hard negative instances. Experimental results on three public benchmarks demonstrate that the proposed debiased contrastive loss can augment several existing MF and GNN-based CF models and outperform popular learning objectives in the recommendation. Additi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盖州市| 石家庄市| 民勤县| 澄江县| 巴彦县| 马公市| 绿春县| 霞浦县| 麻城市| 广德县| 永靖县| 克东县| 砀山县| 罗田县| 红河县| 吴桥县| 东乡县| 涪陵区| 颍上县| 全椒县| 利川市| 什邡市| 长武县| 新和县| 安国市| 大同市| 乌拉特前旗| 渑池县| 阳山县| 峨眉山市| 双辽市| 孝感市| 新密市| 乃东县| 顺平县| 临汾市| 敦化市| 华安县| 安达市| 常德市| 蒙阴县|