找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 17th International C Cungeng Cao,Huajun Chen,Yonghao Wang Conference proceedings 2024 The Ed

[復(fù)制鏈接]
樓主: FETUS
51#
發(fā)表于 2025-3-30 08:27:44 | 只看該作者
52#
發(fā)表于 2025-3-30 12:37:18 | 只看該作者
Meta-pruning: Learning to?Prune on?Few-Shot Learningtting risks, we propose a new meta-learning method termed Meta-Pruning, which diverges from traditional pruning methods by treating pruning as a learnable task and training the model to discern and select beneficial network connections for new tasks. We propose to set the corresponding learning rate
53#
發(fā)表于 2025-3-30 19:10:55 | 只看該作者
54#
發(fā)表于 2025-3-30 22:57:04 | 只看該作者
55#
發(fā)表于 2025-3-31 01:40:38 | 只看該作者
DSCVSR: A Lightweight Video Super-Resolution for?Arbitrary Magnificationdeep learning introduces a large number of parameters, which can result in a large resource overhead, the model cannot be deployed on edge devices. Therefore, in this paper, we design a lightweight video super-resolution model, named Depthwise Separable Convolutional Video Super-Resolution (DSCVSR),
56#
發(fā)表于 2025-3-31 07:43:52 | 只看該作者
Programming Knowledge Tracing with?Context and?Structure Integrationassignment tasks. Previous approaches typically focused on either the structural or contextual representation of code to model PKT. However, relying solely on one type of these code representations may fail to capture the subtle differences in the student-submitted code, leading to inferior tracing
57#
發(fā)表于 2025-3-31 11:17:19 | 只看該作者
58#
發(fā)表于 2025-3-31 15:29:43 | 只看該作者
59#
發(fā)表于 2025-3-31 17:54:52 | 只看該作者
User Story Classification with?Machine Learning and?LLMspted to classify different aspects of user stories in the past. However, classifying the . class has been largely overlooked. To this aim, we present three pipelines. The first two pipelines rely on standard machine learning methods. They differ in how they represent features, i.e. bag-of-word vs. e
60#
發(fā)表于 2025-4-1 01:37:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
精河县| 鲁甸县| 新闻| 新民市| 永丰县| 英吉沙县| 旬阳县| 泾川县| 衡南县| 乌海市| 德格县| 霞浦县| 抚州市| 独山县| 西峡县| 德化县| 惠安县| 渑池县| 宣汉县| 梅河口市| 白银市| 乾安县| 舟山市| 如东县| 即墨市| 高唐县| 黑水县| 贵南县| 合肥市| 岳普湖县| 天门市| 仁怀市| 陇南市| 阿拉善右旗| 禄丰县| 巩留县| 嘉善县| 平舆县| 罗江县| 丰城市| 七台河市|