找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots, Low-Dimensional Topology and Applications; Knots in Hellas, Int Colin C. Adams,Cameron McA. Gordon,Radmila Sazdano Conference procee

[復(fù)制鏈接]
樓主: FERAL
21#
發(fā)表于 2025-3-25 05:38:19 | 只看該作者
,Knot Theory: From Fox 3-Colorings of Links to Yang–Baxter Homology and Khovanov Homology,logy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang–Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang–Baxter homology. Here the work of Fenn–Rourke–
22#
發(fā)表于 2025-3-25 10:46:44 | 只看該作者
Identity Theorem for Pro-,-groups,ider the problems of pro-.-groups theory through the prism of Tannaka duality, concentrating on the category of representations. In particular we attach special importance to the existence of identities in free pro-.-groups (“conjurings”).
23#
發(fā)表于 2025-3-25 11:42:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:27:03 | 只看該作者
26#
發(fā)表于 2025-3-26 03:40:14 | 只看該作者
27#
發(fā)表于 2025-3-26 04:28:07 | 只看該作者
,From the Framisation of the Temperley–Lieb Algebra to the Jones Polynomial: An Algebraic Approach,ey–Lieb algebras. We use this result to obtain a closed combinatorial formula for the invariants for classical links obtained from a Markov trace on the Framisation of the Temperley–Lieb algebra. For a given link ., this formula involves the Jones polynomials of all sublinks of ., as well as linking numbers.
28#
發(fā)表于 2025-3-26 11:35:39 | 只看該作者
Knot Invariants in Lens Spaces,omial of links in lens spaces, which we represent by mixed link diagrams. These invariants generalize the corresponding knot polynomials in the classical case. We compare the invariants by means of the ability to distinguish between some difficult cases of knots with certain symmetries.
29#
發(fā)表于 2025-3-26 16:15:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:07 | 只看該作者
978-3-030-16033-3Springer Nature Switzerland AG 2019
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵南县| 元阳县| 时尚| 高碑店市| 新邵县| 平塘县| 南靖县| 江川县| 措美县| 淮阳县| 尼勒克县| 宜章县| 宁乡县| 察隅县| 富阳市| 昭觉县| 翼城县| 九江市| 马山县| 台中市| 株洲县| 广宁县| 南郑县| 壶关县| 铁力市| 靖安县| 阳西县| 仪陇县| 会宁县| 白城市| 金门县| 高密市| 桑植县| 大悟县| 贵州省| 城口县| 玉林市| 淮滨县| 巨野县| 信宜市| 都江堰市|