找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots and Primes; An Introduction to A Masanori Morishita Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: melancholy
21#
發(fā)表于 2025-3-25 05:11:24 | 只看該作者
n Niger State of Nigeria to areas slightly beyond Lokoja in the south. It is delimited in the northeast and southwest by the basement complex while it merges with Anambra and Sokoto basins in sedimentary fill comprising post orogenic molasse facies and a few thin unfolded marine sediments (Adeleye,
22#
發(fā)表于 2025-3-25 09:55:05 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:00:25 | 只看該作者
25#
發(fā)表于 2025-3-25 20:07:44 | 只看該作者
Knots and Primes, 3-Manifolds and Number Rings,In this chapter we explain the basic analogies between knots and primes, 3-manifolds and number rings, which will be fundamental in subsequent chapters.
26#
發(fā)表于 2025-3-26 03:43:48 | 只看該作者
Linking Numbers and Legendre Symbols,In this chapter, we shall discuss the analogy between the linking number and the Legendre symbol, based on the analogies between knots and primes in Chap. ..
27#
發(fā)表于 2025-3-26 06:55:53 | 只看該作者
Decompositions of Knots and Primes,As we have seen in Sect. ., the Legendre symbol describes how a prime number is decomposed in a quadratic extension.
28#
發(fā)表于 2025-3-26 08:56:47 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:12 | 只看該作者
Link Groups and Galois Groups with Restricted Ramification,As explained in Chap. ., our basic idea is to regard a Galois group with restricted ramification ., ., as an analogue of a link group . (cf. (.)).
30#
發(fā)表于 2025-3-26 18:47:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太谷县| 巴马| 诸暨市| 金寨县| 阜南县| 三门峡市| 黄大仙区| 海原县| 康乐县| 平定县| 绥芬河市| 安多县| 咸阳市| 泸水县| 沙坪坝区| 浙江省| 正定县| 垫江县| 华容县| 定襄县| 介休市| 恩施市| 沿河| 洛阳市| 昭苏县| 驻马店市| 乌鲁木齐县| 平泉县| 加查县| 微博| 抚远县| 天水市| 临湘市| 阜康市| 棋牌| 肇州县| 陆丰市| 册亨县| 元朗区| 定兴县| 原平市|