找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knot Theory and Its Applications; Kunio Murasugi Textbook 1996 Springer Science+Business Media New York 1996 Algebraic topology.Knot invar

[復(fù)制鏈接]
樓主: 恐怖
21#
發(fā)表于 2025-3-25 04:50:59 | 只看該作者
Knot Theory and Its Applications978-0-8176-4719-3Series ISSN 2197-1803 Series E-ISSN 2197-1811
22#
發(fā)表于 2025-3-25 07:59:01 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:17 | 只看該作者
The Jones Revolution,Alexander polynomial, the signature of a knot, ., V. Jones announced the discovery of a new invariant. Instead of further propagating pure theory in knot theory, this new invariant and its subsequent offshoots unlocked connections to various applicable disciplines, some of which we will discuss in the subsequent chapters.
24#
發(fā)表于 2025-3-25 17:48:39 | 只看該作者
Fundamental Problems of Knot Theory,The problems that arise when we study the theory of knots can essentially be divided into two types. On the one hand, there are those that we shall call ., while, in contrast, there are those that we shall call ..
25#
發(fā)表于 2025-3-25 23:28:49 | 只看該作者
Vassiliev Invariants,Towards the end of the 1980s in the midst of the Jones revolution, V.A. Vassiliev introduced a new concept that has had profound significance in the immediate aftermath of the Jones revolution in knot theory [V]. The importance of these so-called Vassiliev invariants lies in that they may be used to study Jones-type invariants more systematically.
26#
發(fā)表于 2025-3-26 01:12:26 | 只看該作者
27#
發(fā)表于 2025-3-26 04:57:15 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:36 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:13 | 只看該作者
Creating Manifolds from Knots, of manifolds (see Definition 8.0.1 below). In this chapter we will show that it is possible to create from an arbitrary knot (or link) a 3-dimensional manifold (usually shortened to 3-manifold). Hence by studying the properties of knots we can gain insight into the properties of 3-manifolds.
30#
發(fā)表于 2025-3-26 17:26:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和顺县| 崇信县| 韶关市| 故城县| 上思县| 泸水县| 乃东县| 雷州市| 和硕县| 荃湾区| 长武县| 额敏县| 昭觉县| 溆浦县| 嵊泗县| 兴业县| 宁国市| 长治市| 遂昌县| 静海县| 河东区| 米易县| 苏尼特右旗| 长寿区| 新巴尔虎右旗| 婺源县| 临颍县| 渭源县| 寿宁县| 焉耆| 长葛市| 古交市| 平江县| 灵丘县| 将乐县| 元谋县| 呼和浩特市| 天祝| 温州市| 都兰县| 兰西县|