找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Keine Angst vor Mathe; Hochschulmathematik Werner Poguntke Textbook 20062nd edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden

[復(fù)制鏈接]
樓主: NO610
21#
發(fā)表于 2025-3-25 04:57:40 | 只看該作者
iology and other functional domains. We discern three routes for arriving at a unified account: literally applying the ICE-theory to the other functional domains, taking non-technical functions as ‘a(chǎn)s-if’ ICE-technical-functions, and generalising the ICE-theory to the other domains. We argue that th
22#
發(fā)表于 2025-3-25 11:10:42 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:21 | 只看該作者
24#
發(fā)表于 2025-3-25 17:27:31 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:17 | 只看該作者
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
26#
發(fā)表于 2025-3-26 02:29:30 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:03 | 只看該作者
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
28#
發(fā)表于 2025-3-26 10:51:33 | 只看該作者
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
29#
發(fā)表于 2025-3-26 13:20:57 | 只看該作者
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
30#
發(fā)表于 2025-3-26 19:25:20 | 只看該作者
Einleitung,tigsten halte. Gegenüber der ersten Auflage ist ein Kapitel über Integrale hinzu gekommen, welches mit ?Messen“ überschrieben ist. Neben den Kapiteln 2 bis 9, mit denen man in vielen anderen Fachgebieten sowie in zahlreichen Bereichen des t?glichen Lebens direkt etwas ?anfangen“ kann (weil man dort
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仲巴县| 高安市| 台江县| 五家渠市| 静海县| 安庆市| 翼城县| 兰西县| 阿克苏市| 防城港市| 长武县| 庐江县| 阜康市| 铜鼓县| 敦化市| 平利县| 南通市| 会泽县| 黄浦区| 潮州市| 晋中市| 祁门县| 大关县| 屯门区| 北安市| 沙洋县| 上杭县| 汶川县| 宁夏| 绵竹市| 忻州市| 海林市| 北流市| 新龙县| 兴义市| 靖边县| 清原| 康乐县| 博乐市| 伊宁市| 额敏县|