找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: KdV ’95; Proceedings of the I Michiel Hazewinkel,Hans W. Capel,Eduard M. Jager Conference proceedings 1995 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 頻率
61#
發(fā)表于 2025-4-1 02:21:33 | 只看該作者
On the Background of Limit Pass for Korteweg—de Vries Equation as the Dispersion Vanishesean one for conservation laws. The applications to the Cauchy problem to KdV equation, when dispersion tends to zero are considered. Also the Galerkin method for a periodic problem for the KdV equation is considered.
62#
發(fā)表于 2025-4-1 06:22:22 | 只看該作者
63#
發(fā)表于 2025-4-1 10:44:04 | 只看該作者
The KPI Equation with Unconstrained Initial Data= 0 and . = 0. It is shown in particular that the solution .(.,.,.) has a time derivative discontinuous at . = 0 and that at any . ≠ 0 it does not belong to the Schwartz space no matter how small in norm and rapidly decaying at large distances the initial data are chosen.
64#
發(fā)表于 2025-4-1 18:04:46 | 只看該作者
65#
發(fā)表于 2025-4-1 19:05:56 | 只看該作者
Applications of KdVkthroughs in the development of modern nonlinear mathematical science. Of all the completely integrable systems discovered since 1967, KdV certainly remains the most fully understood and arguably the most important for applications to macroscopic phenomena and processes.
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安阳市| 六安市| 本溪| 岳阳县| 揭西县| 阜新市| 太白县| 长宁区| 沁水县| 沙湾县| 旌德县| 辽宁省| 石景山区| 永顺县| 孝义市| 南木林县| 新平| 金湖县| 崇仁县| 威远县| 丰顺县| 宁陵县| 墨竹工卡县| 赤壁市| 大理市| 新泰市| 连平县| 理塘县| 福鼎市| 安塞县| 黄陵县| 扎鲁特旗| 平湖市| 抚远县| 东乡县| 儋州市| 鹤山市| 吴堡县| 蒙山县| 济阳县| 镇雄县|