找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Kalman Filtering Under Information Theoretic Criteria; Badong Chen,Lujuan Dang,Jose C. Principe Book 2023 The Editor(s) (if applicable) an

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:04:06 | 只看該作者
Information Theoretic Criteria,apability of model prediction when facing more complex non-Gaussian noises, such as noises from multimodal distributions. Sometimes, in order to obtain an optimal solution, the MEE needs to manually add a bias to the model to yield zero mean error. To more naturally adjust the error mean, the MEE wi
22#
發(fā)表于 2025-3-25 08:42:43 | 只看該作者
Kalman Filtering Under Information Theoretic Criteria, maximum correntropy criterion (GMCKF) is also derived. The GMCKF is more general and flexible, which includes the MCKF with Gaussian kernel as a special case. In addition, to better deal with more complicated non-Gaussian noises such as noises from multimodal distributions, the minimum error entrop
23#
發(fā)表于 2025-3-25 12:46:12 | 只看該作者
24#
發(fā)表于 2025-3-25 19:21:58 | 只看該作者
Cubature Kalman Filtering Under Information Theoretic Criteria,ssian disturbances, the estimates obtained by MCCKF may be obviously biased. To address this issue, the cubature Kalman filter under minimum error entropy with fiducial points (MEEF-CKF) is presented to improve the robustness against noises. The MEEF-CKF can achieve high estimation accuracy and stro
25#
發(fā)表于 2025-3-25 22:55:12 | 只看該作者
26#
發(fā)表于 2025-3-26 02:01:23 | 只看該作者
27#
發(fā)表于 2025-3-26 05:35:42 | 只看該作者
28#
發(fā)表于 2025-3-26 11:01:56 | 只看該作者
29#
發(fā)表于 2025-3-26 16:18:51 | 只看該作者
Introduction,ance, data integration, pattern recognition, tracking, and control systems. Kalman filtering yields an optimal estimator when the system is linear and innovation and noise are Gaussian. The Gaussian assumption is, however, seldom the case in real-world applications, where noise distributions tend to
30#
發(fā)表于 2025-3-26 18:40:23 | 只看該作者
Kalman Filtering, robotics, with an enormous importance in the industry. The actual applications include parameter estimation, system identification, target tracking, simultaneous localization, and many others. The purpose of this chapter is to briefly review the foundations of statistical estimation. For linear dyn
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康乐县| 新疆| 松阳县| 垦利县| 宣城市| 福鼎市| 南靖县| 历史| 民勤县| 鹰潭市| 北碚区| 保亭| 类乌齐县| 甘洛县| 平顶山市| 枝江市| 宝坻区| 汝阳县| 英超| 缙云县| 肃北| 江西省| 琼海市| 彭水| 陆丰市| 两当县| 临泉县| 扶沟县| 望谟县| 英超| 甘德县| 河西区| 定州市| 聂拉木县| 循化| 胶州市| 门源| 乃东县| 祁连县| 绥宁县| 红安县|