找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: KAM Theory and Semiclassical Approximations to Eigenfunctions; Vladimir F. Lazutkin Book 1993 Springer-Verlag Berlin Heidelberg 1993 Eigen

[復(fù)制鏈接]
樓主: Agitated
41#
發(fā)表于 2025-3-28 17:49:25 | 只看該作者
42#
發(fā)表于 2025-3-28 22:19:52 | 只看該作者
Beyond The Torie frequency playing the role of the parameter and ranging over a Cantor set ?. There are an infinite number of holes and gaps which are to be removed from the phase space to obtain the set occupied by KAM tori.
43#
發(fā)表于 2025-3-28 23:37:52 | 只看該作者
44#
發(fā)表于 2025-3-29 06:43:12 | 只看該作者
Quasimodes Attached to a KAM Seter of quasimodes appears to equal the phase-space volume occupied by the KAM set divided by (2π.)., the elementary quantum-cell volume. The construction presented below is the most general one and involves no essential hypotheses.
45#
發(fā)表于 2025-3-29 09:28:46 | 只看該作者
Proof of the Main Theoremin routines checking the inequalities necessary for the iterative process to occur correctly and their simple consequences. In §27 we summarize the results and establish that the objects obtained satisfy the conditions of the conclusion of Theorem 11.6.
46#
發(fā)表于 2025-3-29 15:12:01 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:07 | 只看該作者
48#
發(fā)表于 2025-3-29 20:14:26 | 只看該作者
0071-1136 ographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kolmogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians. In the first part of t
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 20:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东平县| 新巴尔虎左旗| 莆田市| 余庆县| 纳雍县| 临武县| 江城| 泾川县| 崇信县| 忻州市| 沛县| 威宁| 嵩明县| 固原市| 永平县| 岑巩县| 墨脱县| 疏附县| 保亭| 永济市| 太康县| 石渠县| 突泉县| 和龙市| 峨边| 宝丰县| 安塞县| 竹北市| 仲巴县| 巴楚县| 容城县| 台山市| 上虞市| 织金县| 达日县| 彩票| 屯昌县| 高阳县| 延安市| 连州市| 古田县|