找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K3 Surfaces and Their Moduli; Carel Faber,Gavril Farkas,Gerard van der Geer Book 2016 Springer International Publishing Switzerland 2016 K

[復(fù)制鏈接]
樓主: radionuclides
31#
發(fā)表于 2025-3-26 22:50:05 | 只看該作者
978-3-319-80696-9Springer International Publishing Switzerland 2016
32#
發(fā)表于 2025-3-27 04:59:04 | 只看該作者
K3 Surfaces and Their Moduli978-3-319-29959-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
33#
發(fā)表于 2025-3-27 07:55:22 | 只看該作者
Orbital Counting of Curves on Algebraic Surfaces and Sphere Packings,an algebraic surface. Borrowing some results in the theory of orbit counting, we study the asymptotic of the growth of degrees of elements in the orbit of a curve on an algebraic surface with respect to a geometrically finite group of its automorphisms.
34#
發(fā)表于 2025-3-27 09:35:43 | 只看該作者
35#
發(fā)表于 2025-3-27 15:43:51 | 只看該作者
36#
發(fā)表于 2025-3-27 20:02:39 | 只看該作者
The Igusa Quartic and Borcherds Products,rphic forms of weight 6 on the Igusa quartic 3-fold which defines an ..-equivariant rational map of degree 16 from the Igusa quartic to the Segre cubic. In particular, it gives a rational self-map of the Igusa quartic of degree 16.
37#
發(fā)表于 2025-3-28 00:30:30 | 只看該作者
38#
發(fā)表于 2025-3-28 05:42:51 | 只看該作者
39#
發(fā)表于 2025-3-28 08:08:59 | 只看該作者
Geometry of Genus 8 Nikulin Surfaces and Rationality of their Moduli,n a fascinating system of relations to other known geometric families. Our aim is to unveil one of these relations, namely that occurring between the moduli of Nikulin surfaces of genus 8 and the Hilbert scheme of rational sextic curves in the Grassmannian .(1, 4). We will work over an algebraically closed field . of characteristic zero.
40#
發(fā)表于 2025-3-28 10:42:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左云县| 宿迁市| 酉阳| 石柱| 西贡区| 宜川县| 洪湖市| 大荔县| 九台市| 凤凰县| 谷城县| 丰县| 黑河市| 岳西县| 汾阳市| 临安市| 石狮市| 两当县| 石屏县| 晋江市| 罗平县| 将乐县| 甘肃省| 正安县| 大宁县| 山阳县| 井冈山市| 上高县| 鄂托克旗| 通道| 应城市| 陵川县| 佛山市| 恭城| 明星| 来宾市| 台北市| 平邑县| 库车县| 凤翔县| 柏乡县|