找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K-Theory for Group C*-Algebras and Semigroup C*-Algebras; Joachim Cuntz,Siegfried Echterhoff,Guoliang Yu Textbook 2017 Springer Internatio

[復(fù)制鏈接]
樓主: indulge
11#
發(fā)表于 2025-3-23 11:45:40 | 只看該作者
978-3-319-59914-4Springer International Publishing AG 2017
12#
發(fā)表于 2025-3-23 17:27:15 | 只看該作者
K-Theory for Group C*-Algebras and Semigroup C*-Algebras978-3-319-59915-1Series ISSN 1661-237X Series E-ISSN 2296-5041
13#
發(fā)表于 2025-3-23 20:17:58 | 只看該作者
14#
發(fā)表于 2025-3-24 01:59:44 | 只看該作者
https://doi.org/10.1007/978-3-319-59915-1C*-algebras; group C*-algebras; semigroup-C*-algebras; crossed products; K-theory; KK-theory; bivariant K-
15#
發(fā)表于 2025-3-24 03:03:38 | 只看該作者
Introduction,The theory of operator algebras in general and ..-algebras in particular has always benefited hugely and drawn a lot of inspiration from interactions with other areas of mathematics such as geometry, topology, group theory, dynamical systems or number theory, to mention just a few.
16#
發(fā)表于 2025-3-24 08:42:28 | 只看該作者
,Crossed products and the Mackey–Rieffel–Green machine,If a locally compact group . acts continuously via *-automorphisms on a ..-algebra ., one can form the full and reduced crossed products . of . by ..
17#
發(fā)表于 2025-3-24 14:35:13 | 只看該作者
18#
發(fā)表于 2025-3-24 18:18:09 | 只看該作者
Textbook 2017eports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as di
19#
發(fā)表于 2025-3-24 19:36:35 | 只看該作者
Algebraic actions and their ,,-algebras,ection 3.5.3. Some of these are standard examples in ergodic theory, while others arise from semigroups and semigroup actions of number-theoretic origin. All this can be subsumed under the heading “algebraic actions”.
20#
發(fā)表于 2025-3-25 00:45:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家港市| 西宁市| 乾安县| 彭泽县| 乳山市| 个旧市| 济南市| 万全县| 南和县| 永川市| 万州区| 额尔古纳市| 诏安县| 华宁县| 洞头县| 井研县| 中阳县| 合肥市| 四川省| 阳原县| 松溪县| 许昌县| 银川市| 富锦市| 茂名市| 绵阳市| 晋城| 大丰市| 怀集县| 惠安县| 五指山市| 洮南市| 布尔津县| 台中县| 哈尔滨市| 财经| 阿荣旗| 星座| 六盘水市| 麻阳| 丰台区|