找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K?hler Immersions of K?hler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com

[復制鏈接]
樓主: CLOG
31#
發(fā)表于 2025-3-26 22:53:04 | 只看該作者
Hartogs Type Domains,mmetric but just a bounded homogeneous domain.Finally, in Sect. 5.3 we discuss the existence of a K?hler immersion for a large class of Hartogs domains whose K?hler potentials are given locally by . for suitable function . (see Proposition 5.2).
32#
發(fā)表于 2025-3-27 05:10:27 | 只看該作者
33#
發(fā)表于 2025-3-27 06:11:02 | 只看該作者
,Calabi’s Criterion,mplex space formsrespectively. In Sect. 2.3 we discuss the existence of a K?hler immersion of a complex space forminto another, which Calabi himself in (Ann Math 58:1–23, 1953) completely classified as direct application of his criterion.
34#
發(fā)表于 2025-3-27 11:00:15 | 只看該作者
Book 2018ccount of what is known today on the subject and to point out some open problems.? ..Calabi‘s pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally K?hler immersed into a fini
35#
發(fā)表于 2025-3-27 14:06:59 | 只看該作者
1862-9113 ledge of complex and K?hler geometry.Exercises at the end of.The aim of this book is to describe Calabi‘s original work on K?hler immersions of K?hler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.? ..Calab
36#
發(fā)表于 2025-3-27 20:37:08 | 只看該作者
Andrea Loi,Michela ZeddaWinner of the 2017 Book Prize of the Unione Matematica Italiana.Covers topics not surveyed before in the literature.Requires only basic knowledge of complex and K?hler geometry.Exercises at the end of
37#
發(fā)表于 2025-3-28 00:56:04 | 只看該作者
Lecture Notes of the Unione Matematica Italianahttp://image.papertrans.cn/k/image/541469.jpg
38#
發(fā)表于 2025-3-28 05:37:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:17:00 | 只看該作者
978-3-319-99482-6Springer Nature Switzerland AG 2018
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
恩施市| 邓州市| 长汀县| 衡南县| 北宁市| 南和县| 台安县| 酒泉市| 德庆县| 丽水市| 石柱| 宜章县| 合川市| 梁河县| 荣成市| 古蔺县| 隆安县| 甘南县| 宁陕县| 新龙县| 镇江市| 资源县| 舟山市| 应城市| 达拉特旗| 长海县| 洪湖市| 托克逊县| 忻州市| 青龙| 柳林县| 兴山县| 高密市| 萨嘎县| 会宁县| 塘沽区| 灵寿县| 阜新市| 柞水县| 洪湖市| 牡丹江市|