找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Jordan Algebras and Algebraic Groups; Tonny A. Springer Book 1998 Springer-Verlag Berlin Heidelberg 1998 Area.Finite.Lie.Math.algebra.alge

[復(fù)制鏈接]
樓主: DUCT
31#
發(fā)表于 2025-3-27 00:32:08 | 只看該作者
32#
發(fā)表于 2025-3-27 04:47:05 | 只看該作者
33#
發(fā)表于 2025-3-27 05:44:54 | 只看該作者
ation of Jordan algebras in the perspective of classification of certain root systems, the book demonstrates that the structure theories associative, Lie, and Jordan algebras are not separate creations but rather instances of the one all-encompassing miracle of root systems. ..." (Math. Reviews)978-3-540-63632-8978-3-642-61970-0
34#
發(fā)表于 2025-3-27 13:18:38 | 只看該作者
35#
發(fā)表于 2025-3-27 14:16:38 | 只看該作者
Classification of Certain Algebraic Groups,he theory of linear algebraic groups which is basic for that classification. We shall have to rely heavily on the theory of semisimple algebraic groups and their rational representations, for which we refer to [10]. For the results on root systems to be used we refer to [7].
36#
發(fā)表于 2025-3-27 19:11:54 | 只看該作者
J-structures,Let . be a finite dimensional vector space, let . be a rational map .. Denote by . and . a numerator and a denominator of ., respectively. . is a polynomial map of . into . and . a polynomial function on . (see 0.5). Let . be the subset of . × GL(.) consisting of the pairs (g, h) such that
37#
發(fā)表于 2025-3-27 23:24:41 | 只看該作者
Examples,In this section we discuss some examples of J-structures. Almost all of them are related to associative algebras and quadratic forms.
38#
發(fā)表于 2025-3-28 05:11:43 | 只看該作者
39#
發(fā)表于 2025-3-28 06:17:01 | 只看該作者
J-structures of Low Degree,We keep the notations of Section 4. In this section we shall discuss J-structures of degree . ≦ 3, the most interesting case being . = 3. The trivial case . 1 has already been discussed in 2.19.
40#
發(fā)表于 2025-3-28 13:41:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
共和县| 青冈县| 长泰县| 都昌县| 肥西县| 遂平县| 天津市| 马关县| 望谟县| 边坝县| 河源市| 盘锦市| 宁城县| 房山区| 北京市| 大方县| 沅江市| 阳江市| 阳曲县| 黔西县| 鹤壁市| 东城区| 德州市| 象山县| 益阳市| 元江| 新蔡县| 调兵山市| 石景山区| 麻江县| 阿瓦提县| 德钦县| 岑溪市| 恩施市| 新沂市| 定结县| 双牌县| 林甸县| 苏尼特左旗| 双牌县| 宜宾市|