找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Python and Large Language Models; A Guide to Language Dilyan Grigorov Book 2024 Dilyan Grigorov 2024 Computer Science.Info

[復(fù)制鏈接]
查看: 38237|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:02:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Introduction to Python and Large Language Models
副標(biāo)題A Guide to Language
編輯Dilyan Grigorov
視頻videohttp://file.papertrans.cn/477/476483/476483.mp4
概述Provides practical applications of LLMs, with essential NLP concepts such as text preprocessing, and sentiment analysis.Covers Python programming concepts such as Python syntax, data types, functions,
圖書(shū)封面Titlebook: Introduction to Python and Large Language Models; A Guide to Language  Dilyan Grigorov Book 2024 Dilyan Grigorov 2024 Computer Science.Info
描述.Gain a solid foundation for Natural Language Processing (NLP) and Large Language Models (LLMs), emphasizing their significance in today’s computational world. This book is an introductory guide to NLP and LLMs with Python programming...The book starts with the basics of NLP and LLMs. It covers essential NLP concepts, such as text preprocessing, feature engineering, and sentiment analysis using Python. The book offers insights into Python programming, covering syntax, data types, conditionals, loops, functions, and object-oriented programming. Next, it delves deeper into LLMs, unraveling their complex components...You’ll learn about LLM elements, including embedding layers, feedforward layers, recurrent layers, and attention mechanisms. You’ll also explore important topics like tokens, token distributions, zero-shot learning, LLM hallucinations, and insights into popular LLM architectures such as GPT-4, BERT, T5, PALM, and others. Additionally, it covers Python libraries like Hugging Face, OpenAI API, and Cohere. The final chapter bridges theory with practical application, offering step-by-step examples of coded applications for tasks like text generation, summarization, language t
出版日期Book 2024
關(guān)鍵詞Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/979-8-8688-0540-0
isbn_softcover979-8-8688-0539-4
isbn_ebook979-8-8688-0540-0
copyrightDilyan Grigorov 2024
The information of publication is updating

書(shū)目名稱Introduction to Python and Large Language Models影響因子(影響力)




書(shū)目名稱Introduction to Python and Large Language Models影響因子(影響力)學(xué)科排名




書(shū)目名稱Introduction to Python and Large Language Models網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Introduction to Python and Large Language Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Introduction to Python and Large Language Models被引頻次




書(shū)目名稱Introduction to Python and Large Language Models被引頻次學(xué)科排名




書(shū)目名稱Introduction to Python and Large Language Models年度引用




書(shū)目名稱Introduction to Python and Large Language Models年度引用學(xué)科排名




書(shū)目名稱Introduction to Python and Large Language Models讀者反饋




書(shū)目名稱Introduction to Python and Large Language Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:56 | 只看該作者
What Are Large Language Models?,ir lives. However, machines lack an inherent ability to comprehend and communicate in human language unless equipped with powerful AI algorithms. The long-standing research challenge and aspiration have been to enable machines to attain human-like reading, writing, and communication skills.
板凳
發(fā)表于 2025-3-22 02:32:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:41:15 | 只看該作者
5#
發(fā)表于 2025-3-22 12:32:37 | 只看該作者
Basic Overview of the Components of the LLM Architectures,r appreciating how LLMs transform raw textual data into meaningful, context-aware outputs. The key components discussed in this chapter include .. Each of these plays a pivotal role in enabling LLMs to process and generate human-like language.
6#
發(fā)表于 2025-3-22 13:10:39 | 只看該作者
7#
發(fā)表于 2025-3-22 21:00:17 | 只看該作者
Harnessing Python 3.11 and Python Libraries for LLM Development,from natural language processing to sophisticated AI-driven solutions. The advent of Python 3.11 brings a host of new features and optimizations that significantly enhance the development of these complex models. Coupled with an array of robust Python libraries, this chapter delves into the practica
8#
發(fā)表于 2025-3-23 00:46:42 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:15 | 只看該作者
Hugging Face, OpenAI API, and Cohere. The final chapter bridges theory with practical application, offering step-by-step examples of coded applications for tasks like text generation, summarization, language t979-8-8688-0539-4979-8-8688-0540-0
10#
發(fā)表于 2025-3-23 05:50:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新晃| 翼城县| 信丰县| 霍山县| 栾城县| 东台市| 老河口市| 麻江县| 绥棱县| 横峰县| 井冈山市| 陕西省| 盐城市| 石泉县| 宁乡县| 德令哈市| 鹤壁市| 南京市| 玛多县| 弋阳县| 嘉兴市| 洛宁县| 五家渠市| 灌南县| 若羌县| 靖江市| 鹿邑县| 兴安盟| 民权县| 宜都市| 天等县| 白银市| 黑河市| 章丘市| 文水县| 鹤壁市| 阿拉善盟| 石门县| 佳木斯市| 丽江市| 仁寿县|