找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Irreversibility and Causality; Semigroups and Rigge Arno Bohm,Heinz-Dietrich Doebner,Piotr Kielanowski Conference proceedings 1998 Springer

[復(fù)制鏈接]
樓主: 外表
41#
發(fā)表于 2025-3-28 15:25:22 | 只看該作者
Quantum scattering of resonances: Poles of a continued ,-matrix and poles of an extended resolvent,rix and through the poles of an extended resolvent is meaningful only if one specifies an appropriate rigged Hilbert space for the extended resolvent. This means that the test space Φ with an appropriate topology should be specified. If it is done our theorem (see Sect. 5) gives the sufficient condi
42#
發(fā)表于 2025-3-28 21:08:25 | 只看該作者
43#
發(fā)表于 2025-3-29 00:18:13 | 只看該作者
CP-violation problem beyond the standard lee-oehme-yang theory,ased on the famous Weisskopf-Wigner (W.W.) approximation. New unconditional CP-violation effects were derived, independent of the ones known before, as well as new unconditional tests of the CPT- and T-invariances and new results for the .., . correlations were found. On the base of these new theore
44#
發(fā)表于 2025-3-29 04:50:48 | 只看該作者
45#
發(fā)表于 2025-3-29 10:28:01 | 只看該作者
46#
發(fā)表于 2025-3-29 13:55:38 | 只看該作者
47#
發(fā)表于 2025-3-29 18:52:28 | 只看該作者
From stochastic semigroups to chaotic dynamics,s projections of Kolmogorov dynamical systems. This result shows moreover the physical significance of the Misra-Prigogine-Courbage theory of irreversibility. Because we want positivity preserving transformations, our procedure although analogous to the Sz-Nagy-Foias Dilation theory has a different viewpoint, that of positive dilations.
48#
發(fā)表于 2025-3-29 20:35:13 | 只看該作者
49#
發(fā)表于 2025-3-30 02:57:43 | 只看該作者
50#
發(fā)表于 2025-3-30 05:32:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦皇岛市| 句容市| 贵南县| 阿克苏市| 贵定县| 高唐县| 湛江市| 南溪县| 项城市| 珠海市| 紫阳县| 大厂| 富民县| 彭州市| 明溪县| 彭水| 德清县| 佛学| 平南县| 通化市| 巴青县| 明溪县| 海南省| 剑川县| 高要市| 搜索| 扎鲁特旗| 莆田市| 安岳县| 宝坻区| 全南县| 青川县| 报价| 大连市| 崇仁县| 阿拉尔市| 于都县| 岗巴县| 东安县| 贵阳市| 临夏县|