找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Investigations in Algebraic Theory of Combinatorial Objects; I. A. Farad?ev,A. A. Ivanov,A. J. Woldar Book 1994 Springer Science+Business

[復制鏈接]
樓主: finesse
41#
發(fā)表于 2025-3-28 17:47:10 | 只看該作者
Computation of Lengths of Orbits of a Subgroup in a Transitive Permutation Grouproup as an automorphism group. For example, in Section 3 this method is used to construct a new cubic graph on 110 vertices which is edge- but not vertex-transitive and which admits .. (11) as automorphism group.
42#
發(fā)表于 2025-3-28 22:16:03 | 只看該作者
Construction of an Automorphic Graph on 280 Vertices Using Finite Geometriesng for special constructions which give a simple and beautiful description of certain distance-transitive graphs. The necessity of such constructions also arises in the interpretation of graphs which were discovered by means of a computer.
43#
發(fā)表于 2025-3-29 00:10:51 | 只看該作者
44#
發(fā)表于 2025-3-29 03:17:37 | 只看該作者
45#
發(fā)表于 2025-3-29 07:18:18 | 只看該作者
On ,-Local Analysis of Permutation Groupshe alternating (..) groups was given. It is interesting to know what part of this description can be obtained by the classical methods of permutation group theory. In particular, the following questions are of interest.
46#
發(fā)表于 2025-3-29 14:37:20 | 只看該作者
The Subschemes of the Hamming Schemeubschemes is closely related to the study of the lattice of overgroups of the exponentiation .. ↑ .. in the symmetric group .. For this reason the results of the paper can be used in the study of symmetry in algebraic codes, and in the classification of Boolean functions. Some examples of subschemes
47#
發(fā)表于 2025-3-29 18:09:25 | 只看該作者
48#
發(fā)表于 2025-3-29 23:22:55 | 只看該作者
49#
發(fā)表于 2025-3-30 03:52:14 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:07 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 07:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
扎囊县| 平果县| 利川市| 荣成市| 安陆市| 环江| 常熟市| 英超| 许昌市| 南召县| 临泽县| 稻城县| 安宁市| 宝清县| 荥经县| 德庆县| 司法| 金沙县| 长阳| 南澳县| 瓮安县| 会昌县| 威信县| 宁海县| 荔波县| 花莲县| 天峻县| 云梦县| 金华市| 凤冈县| 开封市| 渑池县| 增城市| 贡觉县| 封丘县| 景德镇市| 海丰县| 桦南县| 康马县| 宁德市| 延吉市|