找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inverse Obstacle Scattering with Non-Over-Determined Scattering Data; Alexander G. Ramm Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
查看: 24172|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:10:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data
編輯Alexander G. Ramm
視頻videohttp://file.papertrans.cn/475/474673/474673.mp4
叢書名稱Synthesis Lectures on Mathematics & Statistics
圖書封面Titlebook: Inverse Obstacle Scattering with Non-Over-Determined Scattering Data;  Alexander G. Ramm Book 2019 Springer Nature Switzerland AG 2019
描述.The inverse obstacle scattering problem consists of finding the unknown surface of a body (obstacle) from the scattering ????(????;????;????), where ????(????;????;????) is the scattering amplitude, ????;???? ???? ????2 is the direction of the scattered, incident wave, respectively, ????2 is the unit sphere in the ?3 and k > 0 is the modulus of the wave vector. The scattering data is called non-over-determined if its dimensionality is the same as the one of the unknown object. By the dimensionality one understands the minimal number of variables of a function describing the data or an object. In an inverse obstacle scattering problem this number is 2, and an example of non-over-determined data is ????(????) := ????(????;?????;?????). By sub-index 0 a fixed value of a variable is denoted...It is proved in this book that the data ????(????), known for all ???? in an open subset of ????2, determines uniquely the surface ???? and the boundary condition on ????. This condition can be the Dirichlet, or the Neumann, or the impedance type...The above uniqueness theorem is of principal importance because the non-over-determined data are the minimal data determining uniquely the unknown ???
出版日期Book 2019
版次1
doihttps://doi.org/10.1007/978-3-031-02418-4
isbn_softcover978-3-031-01290-7
isbn_ebook978-3-031-02418-4Series ISSN 1938-1743 Series E-ISSN 1938-1751
issn_series 1938-1743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data影響因子(影響力)




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data影響因子(影響力)學(xué)科排名




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data網(wǎng)絡(luò)公開度




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data被引頻次




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data被引頻次學(xué)科排名




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data年度引用




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data年度引用學(xué)科排名




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data讀者反饋




書目名稱Inverse Obstacle Scattering with Non-Over-Determined Scattering Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:56:31 | 只看該作者
Alexander G. Rammies, of which 1500 and their one million members are represented by the European federation of RE cooperatives, REScoop.eu (REScoop.eu 2018b,?2018c; Huybrechts et al. 2018) and registered as a Renewable Energy Sources Cooperative (REScoop). Thereby RE cooperatives have the potential to not only beco
地板
發(fā)表于 2025-3-22 07:37:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:01:35 | 只看該作者
Alexander G. Rammtoday, RE consumer (co-)ownership comes mainly in two forms: individual ownership and/or leasing arrangements, especially for small PV or battery storage projects, but also for heat pumps, with self-sufficiency being a major motivation as the legal framework is shifting away from guaranteed feed-in
6#
發(fā)表于 2025-3-22 16:27:32 | 只看該作者
7#
發(fā)表于 2025-3-22 19:24:13 | 只看該作者
1938-1743 ce type...The above uniqueness theorem is of principal importance because the non-over-determined data are the minimal data determining uniquely the unknown ???978-3-031-01290-7978-3-031-02418-4Series ISSN 1938-1743 Series E-ISSN 1938-1751
8#
發(fā)表于 2025-3-22 21:49:51 | 只看該作者
9#
發(fā)表于 2025-3-23 02:04:30 | 只看該作者
Introduction,f finding the scattering solution u(x, α. as the solution to the Helmholtz equation.where .(.) is the unit normal to . pointing into .’ = ?. ., ζ(.) is a continuous function, . is .-smooth, and the . in (1.4) is uniform in directions ..
10#
發(fā)表于 2025-3-23 06:02:37 | 只看該作者
978-3-031-01290-7Springer Nature Switzerland AG 2019
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 20:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晋州市| 民乐县| 锡林郭勒盟| 岳池县| 合川市| 左权县| 隆化县| 沙坪坝区| 安陆市| 岳普湖县| 牙克石市| 新巴尔虎右旗| 镇平县| 鄢陵县| 新营市| 汝州市| 寻甸| 自治县| 原阳县| 工布江达县| 孟津县| 高台县| 内乡县| 道孚县| 天气| 元氏县| 连江县| 沙田区| 卢湾区| 孟津县| 卢氏县| 清镇市| 怀柔区| 繁峙县| 林口县| 合山市| 阳东县| 钟祥市| 敖汉旗| 舞阳县| 界首市|