找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Invariant Integrals in Physics; Genady P. Cherepanov Book 2019 Springer Nature Switzerland AG 2019 Invariant or path-independent integrals

[復制鏈接]
查看: 42472|回復: 45
樓主
發(fā)表于 2025-3-21 16:13:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Invariant Integrals in Physics
編輯Genady P. Cherepanov
視頻videohttp://file.papertrans.cn/475/474568/474568.mp4
概述Provides a new, general tool to search for novel physical laws and to effectively derive known laws.Valuable resource for theorists at postgraduate and research level, and also lecturers.Author well k
圖書封面Titlebook: Invariant Integrals in Physics;  Genady P. Cherepanov Book 2019 Springer Nature Switzerland AG 2019 Invariant or path-independent integrals
描述.In this book, all physical laws are derived from a small number of invariant integrals which express the conservation of energy, mass, or momentum. This new approach allows us to unify the laws of theoretical physics, to simplify their derivation, and to discover some novel or more universal laws. Newton‘s Law of gravity is generalized to take into account cosmic forces of repulsion, Archimedes‘ principle of buoyancy is modified for account of the surface tension, and Coulomb‘s Laws for rolling friction and for the interaction of electric charges are substantially repaired and generalized. For postgraduate students, lecturers and researchers..
出版日期Book 2019
關(guān)鍵詞Invariant or path-independent integrals of physics; Derivation of physical laws; Search of new physica
版次1
doihttps://doi.org/10.1007/978-3-030-28337-7
isbn_softcover978-3-030-28339-1
isbn_ebook978-3-030-28337-7
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Invariant Integrals in Physics影響因子(影響力)




書目名稱Invariant Integrals in Physics影響因子(影響力)學科排名




書目名稱Invariant Integrals in Physics網(wǎng)絡公開度




書目名稱Invariant Integrals in Physics網(wǎng)絡公開度學科排名




書目名稱Invariant Integrals in Physics被引頻次




書目名稱Invariant Integrals in Physics被引頻次學科排名




書目名稱Invariant Integrals in Physics年度引用




書目名稱Invariant Integrals in Physics年度引用學科排名




書目名稱Invariant Integrals in Physics讀者反饋




書目名稱Invariant Integrals in Physics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:06:48 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:06 | 只看該作者
The Theory of Flight,nd the lift force of wings were derived from Joukowski’ profiles using the invariant integrals and complex variables. The optimal shape of airfoils is suggested and calculated. Method of discrete vortices applied to turbulent flows with large Reynolds number appeared to be useful for the characteriz
5#
發(fā)表于 2025-3-22 11:36:57 | 只看該作者
6#
發(fā)表于 2025-3-22 13:45:46 | 只看該作者
7#
發(fā)表于 2025-3-22 18:35:48 | 只看該作者
Theory of Fracking,nt integral, complex variables, boundary layers, and his method of functional equations (published in the .). In the chapter, the shape of the destructed rock volume and the gas/fluid output of the borehole are determined in terms of the geometrical, physical, and instrumental parameters of fracking
8#
發(fā)表于 2025-3-23 00:57:00 | 只看該作者
Fatigue and Superplasicity,unt. Invariant integral is used as a basic variable. The fatigue crack threshold is determined by one atomic spacing of the crack growth per cycle. Superplastic flow of superfine grains is studied using the modified Arrhenius equation, and the theory of superplasticity is advanced. As a result, the
9#
發(fā)表于 2025-3-23 03:34:21 | 只看該作者
10#
發(fā)表于 2025-3-23 08:27:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 22:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
洛隆县| 云梦县| 通道| 赞皇县| 太保市| 旬邑县| 丹阳市| 邹平县| 崇阳县| 吴川市| 丽水市| 奉节县| 丰都县| 金门县| 磴口县| 申扎县| 开远市| 宜州市| 茂名市| 布尔津县| 隆德县| 都江堰市| 怀集县| 富顺县| 修水县| 且末县| 湄潭县| 肥西县| 驻马店市| 沿河| 太湖县| 合水县| 含山县| 紫阳县| 信宜市| 易门县| 江源县| 浏阳市| 定日县| 衡水市| 东兰县|