找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Theory and Application of the Laplace Transformation; Gustav Doetsch Book 1974 Springer-Verlag Berlin Heidelberg 1974

[復(fù)制鏈接]
樓主: 大口水罐
31#
發(fā)表于 2025-3-27 00:21:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:28 | 只看該作者
33#
發(fā)表于 2025-3-27 05:35:42 | 只看該作者
The Initial Value Problem of Ordinary Differential Equations with Constant Coefficients,ntegrating ordinary linear differential equations with constant coefficients in the interval . ≧ 0, for specified values of the solution and some of its derivatives at . = 0, the initial values (Initial Value Problem). This is a problem which may be solved by a familiar classical technique: First on
34#
發(fā)表于 2025-3-27 10:18:57 | 只看該作者
The Ordinary Differential Equation, specifying Initial Values for Derivatives of Arbitrary Order, a 0. However, one could encounter some initial value problem with . specified values at . = 0 for derivatives of arbitrary order. For instance, for same third order differential equation one might specify the initial values . .(0), . .(0), . . (0). In this case, we would solve the problem as if . (0)
35#
發(fā)表于 2025-3-27 16:56:36 | 只看該作者
36#
發(fā)表于 2025-3-27 18:02:05 | 只看該作者
The Ordinary Linear Differential Equation in the Space of Distributions,ibution-derivative equations.” In the latter, the given and the sought quantities are distributions. To emphasize the analogy to the case of functions, we shall employ here for the designation of distributions lower case letters like ., ., . . . (which are usually reserved for functions) instead of
37#
發(fā)表于 2025-3-28 00:33:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:21:12 | 只看該作者
39#
發(fā)表于 2025-3-28 06:48:26 | 只看該作者
40#
發(fā)表于 2025-3-28 14:03:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 15:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
馆陶县| 海门市| 周口市| 色达县| 建瓯市| 临城县| 德令哈市| 洪雅县| 苗栗县| 专栏| 图们市| 宜兴市| 阿克| 儋州市| 富裕县| 高碑店市| 湘西| 奉节县| 喀喇沁旗| 新蔡县| 扎兰屯市| 杂多县| 临海市| 门源| 秭归县| 思南县| 景东| 高要市| 黄陵县| 抚顺市| 安塞县| 开江县| 三穗县| 左权县| 霍州市| 永顺县| 行唐县| 旌德县| 安塞县| 丹棱县| 宁都县|