找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Representation Theory of Algebras; Michael Barot Textbook 2015 Springer International Publishing Switzerland 2015 Ausl

[復(fù)制鏈接]
樓主: GALL
21#
發(fā)表于 2025-3-25 03:42:54 | 只看該作者
Module Categories,nique. Several categorical notions for modules are developed: projective and injective, simple and semisimple modules are defined. In each case a full characterization of indecomposable modules with that particular property is achieved. This is a first step towards understanding the structure of module categories.
22#
發(fā)表于 2025-3-25 08:58:08 | 只看該作者
23#
發(fā)表于 2025-3-25 14:51:23 | 只看該作者
Matrix Problems, with a given subdivision is given and a “normal form” is sought: that is a family of matrices such that of each equivalence class one and only matrix, the representative, is chosen..There is little theory within this chapter as the main goal is to establish the normal form of certain examples: the
24#
發(fā)表于 2025-3-25 18:16:47 | 只看該作者
Representations of Quivers,ly to a more sophisticated language known as categories and functors and large part of the chapter is devoted to the development of this new language. The benefit of it will be that the list of “normal forms” will be enhanced by some internal structure. At the end a the important example of a linear
25#
發(fā)表于 2025-3-25 20:16:53 | 只看該作者
Algebras,up the whole chapter. With this three different languages are developed for the same thing, each of which with a distinctive flavour. All three languages have their own advantages and it is convenient to be able to switch freely between them as in the literature all three of them are used..As we wil
26#
發(fā)表于 2025-3-26 02:07:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:33 | 只看該作者
28#
發(fā)表于 2025-3-26 12:20:35 | 只看該作者
The Auslander-Reiten Theory,s of notions and results named after Auslander and Reiten is presented, all of them constitute the Auslander-Reiten theory: The “Auslander-Reiten translate”, which associates to every indecomposable non-projective module an indecomposable non-injective module and the the “Auslander Reiten sequences”
29#
發(fā)表于 2025-3-26 12:40:11 | 只看該作者
Knitting,the Auslander-Reiten quiver including the structure of the contained indecomposable modules. The development of the knitting technique takes up the main part of this chapter and will exhibited at concrete examples. It underlines the importance of combinatorial invariants, which will be studied with
30#
發(fā)表于 2025-3-26 19:35:36 | 只看該作者
Combinatorial Invariants,l useful tools are presented for working with dimension vectors: The first of them, called Grothendieck group, is based on homological algebra. The second linearizes the Auslander-Reiten translation as an action on the Grothendieck group and is called Coxeter transformation. The third is a quadratic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 04:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绩溪县| 西贡区| 塔城市| 东山县| 旬邑县| 鸡泽县| 宁波市| 江北区| 富阳市| 夹江县| 昭平县| 泰安市| 瓦房店市| 海兴县| 甘德县| 盐津县| 扎赉特旗| 吴江市| 临西县| 马尔康县| 平果县| 黔东| 枣阳市| 大姚县| 克拉玛依市| 上栗县| 武威市| 武川县| 商丘市| 岑溪市| 崇州市| 綦江县| 镶黄旗| 郑州市| 临高县| 沙雅县| 石泉县| 个旧市| 夹江县| 佛学| 五台县|