找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Perturbation Theory of Hamiltonian Systems; Dmitry Treschev,Oleg Zubelevich Book 2010 Springer-Verlag Berlin Heidelber

[復制鏈接]
樓主: incontestable
31#
發(fā)表于 2025-3-26 23:22:13 | 只看該作者
eading scientists and engineers.Edited by renowned Encyclope.The .Encyclopedia of Sustainability Science and Technology. (ESST) addresses the grand challenge for science and engineering today. It provides unprecedented, peer-reviewed coverage in more than 550 separate entries comprising 38 topical s
32#
發(fā)表于 2025-3-27 02:10:32 | 只看該作者
Introduction to the KAM Theory,bability measure on the phase space if the measure of any invariant set equals zero or one.). In the present chapter we discuss basic facts and ideas of the KAM theory and prove one of the simplest theorems of this type.
33#
發(fā)表于 2025-3-27 08:40:59 | 只看該作者
34#
發(fā)表于 2025-3-27 11:02:31 | 只看該作者
35#
發(fā)表于 2025-3-27 16:34:58 | 只看該作者
The Continuous Averaging Method,mical systems. In these cases one possible approach is based on the continuous averaging. The method appeared as an extension of the Neishtadt averaging procedure (Neishtadt in Prikl. Mat. Meh. 46(2):197–204, 1984) effectively working in the presence of exponentially small effects.
36#
發(fā)表于 2025-3-27 18:02:59 | 只看該作者
1439-7382 s given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we
37#
發(fā)表于 2025-3-27 23:59:45 | 只看該作者
Book 2010ersity. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appea
38#
發(fā)表于 2025-3-28 03:49:47 | 只看該作者
https://doi.org/10.1007/978-3-642-03028-4Hamiltonian dynamics; KAM theory; Kolmogorov–Arnold–Moser theorem; dynamics; hamiltonian system; manifold
39#
發(fā)表于 2025-3-28 07:38:28 | 只看該作者
40#
發(fā)表于 2025-3-28 12:18:52 | 只看該作者
Introduction to the Perturbation Theory of Hamiltonian Systems978-3-642-03028-4Series ISSN 1439-7382 Series E-ISSN 2196-9922
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
农安县| 江陵县| 阿巴嘎旗| 秀山| 姚安县| 诸暨市| 安塞县| 儋州市| 新泰市| 苗栗县| 彩票| 佛山市| 乌拉特前旗| 伊吾县| 威远县| 清流县| 雅安市| 盐山县| 广丰县| 江西省| 香格里拉县| 偃师市| 浦城县| 沙河市| 深圳市| 延吉市| 凯里市| 三河市| 沧州市| 夏津县| 石嘴山市| 大石桥市| 广汉市| 清苑县| 虞城县| 公主岭市| 乃东县| 通榆县| 天气| 新平| 嘉义县|