找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Perturbation Theory of Hamiltonian Systems; Dmitry Treschev,Oleg Zubelevich Book 2010 Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: incontestable
11#
發(fā)表于 2025-3-23 10:22:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:39:46 | 只看該作者
13#
發(fā)表于 2025-3-23 20:47:04 | 只看該作者
Dmitry Treschev,Oleg Zubelevichtensive bibliography, including titles of the original publications in which descriptions of almost all South American species appeared.? Although taxonomic revisions are deliberately avoided, suggestions for a978-90-481-7196-5978-1-4020-4802-9
14#
發(fā)表于 2025-3-24 01:47:29 | 只看該作者
Dmitry Treschev,Oleg Zubelevichhat the user of the key can determine with reasonable certainty whether or not his specimen belongs to a species that has already been described or whether it is one that is not yet know978-90-481-6381-6978-94-017-1423-5Series ISSN 2509-324X Series E-ISSN 2509-3258
15#
發(fā)表于 2025-3-24 03:17:32 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:24:51 | 只看該作者
18#
發(fā)表于 2025-3-24 17:44:16 | 只看該作者
19#
發(fā)表于 2025-3-24 19:21:16 | 只看該作者
The Continuous Averaging Method,n inclusion of a diffeomorphism into a flow in the analytic set up, and the problem of quantitative description of exponentially small effects in dynamical systems. In these cases one possible approach is based on the continuous averaging. The method appeared as an extension of the Neishtadt averagi
20#
發(fā)表于 2025-3-25 02:02:39 | 只看該作者
,Hill’s Formula,ynomial of the monodromy matrix for a second order time periodic equation in terms of the determinant of a certain infinite matrix. Here we present several versions of this formula and give its applications in the problem of dynamical stability.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 08:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓资县| 定陶县| 轮台县| 河池市| 河间市| 宿州市| 南靖县| 蛟河市| 平泉县| 新野县| 杭州市| 桓仁| 桂林市| 清丰县| 东光县| 徐州市| 香港 | 东方市| 香格里拉县| 额济纳旗| 察哈| 石首市| 太原市| 弥勒县| 六安市| 罗田县| 德令哈市| 万源市| 柳林县| 临湘市| 丰原市| 福鼎市| 轮台县| 民乐县| 陈巴尔虎旗| 晋江市| 仁化县| 屯昌县| 宜城市| 广水市| 临高县|