找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Mori Program; Kenji Matsuki Textbook 2002 Springer Science+Business Media New York 2002 Dimension.Grad.algebra.algebra

[復(fù)制鏈接]
樓主: retort
21#
發(fā)表于 2025-3-25 06:34:51 | 只看該作者
22#
發(fā)表于 2025-3-25 08:40:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:33:15 | 只看該作者
24#
發(fā)表于 2025-3-25 19:01:44 | 只看該作者
25#
發(fā)表于 2025-3-25 22:51:03 | 只看該作者
Cone Theorem, the same cohomological arguments developed for the proofs of the base point freeness theorem and the non-vanishing theorem of the previous chapter. We note that our point of view for discussing the behavior of divisors following Kawamata—Reid—Shokurov—Kollar is “dual” to the original approach of Mo
26#
發(fā)表于 2025-3-26 01:23:46 | 只看該作者
27#
發(fā)表于 2025-3-26 06:33:34 | 只看該作者
Cone Theorem Revisited,method of .” to produce rational curves of some bounded degree (with respect to an ample divisor or to the canonical divisor). This method leads to the result of Miyaoka—Mori [1] claiming the . of Mori fiber spaces, yielding the generalization by Kawamata [13] claiming that (every irreducible compon
28#
發(fā)表于 2025-3-26 08:55:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:29 | 只看該作者
Birational Relation among Minimal Models,n dimension 2 in a fixed birational equivalence class is unique. This is no longer true in dimension 3 or higher, i.e., there may exist many minimal models in general even in a fixed birational equivalence class, and here arises a need to study the birational relation among them.
30#
發(fā)表于 2025-3-26 17:58:44 | 只看該作者
Birational Relation Among Mori Fiber Spaces,i [1], which gives an algorithm for factoring a given birational map between Mori fiber spaces into a sequence of certain elementary transformations called “..” While it is a higher-dimensional analogue of the Castelnuovo—Noether theorem (cf. Theorem 1-8-8), its true meaning becomes clearer in the f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 20:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊川县| 扎囊县| 明溪县| 宜都市| 曲沃县| 桓仁| 正定县| 萝北县| 汪清县| 萨嘎县| 庐江县| 嘉定区| 丰原市| 万源市| 特克斯县| 德昌县| 保定市| 开平市| 库车县| 祁门县| 班戈县| 曲阳县| 镇江市| 滕州市| 丽江市| 股票| 建宁县| 三门峡市| 武陟县| 商都县| 蓬安县| 芒康县| 蛟河市| 淮北市| 兴国县| 四川省| 万年县| 蒲城县| 息烽县| 三河市| 牡丹江市|