找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Time Series and Forecasting; Peter J. Brockwell,Richard A. Davis Textbook 2016Latest edition Springer Nature Switzerland A

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:15:31 | 只看該作者
Further Topics, ARMA processes in discrete time. Besides being of interest in their own right, they have proved a useful class of models in the representation of financial time series and in the modeling of irregularly spaced data.
12#
發(fā)表于 2025-3-23 14:36:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:11:09 | 只看該作者
1431-875X ate time series and state-space models, with an optional chapter on spectral analysis. Many additional special topics are also covered..New to this edition:.A chapter devoted to Financial Time Series.Introducti978-3-319-29854-2Series ISSN 1431-875X Series E-ISSN 2197-4136
14#
發(fā)表于 2025-3-23 23:34:01 | 只看該作者
Introduction,ity and the autocovariance and sample autocovariance functions. Some standard techniques are described for the estimation and removal of trend and seasonality (of known period) from an observed time series. These are illustrated with reference to the data sets in Section 1.1. The calculations in all
15#
發(fā)表于 2025-3-24 05:35:29 | 只看該作者
16#
發(fā)表于 2025-3-24 09:50:32 | 只看該作者
Spectral Analysis, 5 The spectral representation of a stationary time series {..} essentially decomposes {..} into a sum of sinusoidal components with uncorrelated random coefficients. In conjunction with this decomposition there is a corresponding decomposition into sinusoids of the autocovariance function of {..}.
17#
發(fā)表于 2025-3-24 13:13:17 | 只看該作者
Modeling and Forecasting with ARMA Processes, include the choice of . and . (order selection) and estimation of the mean, the coefficients {..,?.?=?1,?.,?.}, {..,?.?=?1,?.,?.}, and the white noise variance ... Final selection of the model depends on a variety of goodness of fit tests, although it can be systematized to a large degree by use of
18#
發(fā)表于 2025-3-24 18:34:35 | 只看該作者
19#
發(fā)表于 2025-3-24 19:33:34 | 只看該作者
20#
發(fā)表于 2025-3-25 03:11:17 | 只看該作者
Forecasting Techniques,riateness of?these models, of minimum mean squared error predictors. If the observed series had in fact been generated by the fitted model, this procedure would give minimum mean squared error forecasts. In this chapter we discuss three forecasting techniques that have less emphasis on the explicit
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇西县| 苏尼特右旗| 虹口区| 勃利县| 荣成市| 涿鹿县| 科技| 屯门区| 定襄县| 三都| 奇台县| 永登县| 宁远县| 四平市| 普定县| 山西省| 信宜市| 辽阳县| 五大连池市| 黎平县| 哈尔滨市| 昂仁县| 洞头县| 四川省| 白山市| 汤原县| 嘉兴市| 定日县| 乐亭县| 兖州市| 昌江| 雷波县| 福州市| 乐昌市| 区。| 城口县| 四川省| 康平县| 紫阳县| 井冈山市| 大邑县|