找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Structurally Stable Systems of Differential Equations; Sergei Yu. Pilyugin Book 1992 Springer Basel AG 1992 analysis on ma

[復(fù)制鏈接]
查看: 43550|回復(fù): 51
樓主
發(fā)表于 2025-3-21 18:45:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Structurally Stable Systems of Differential Equations
編輯Sergei Yu. Pilyugin
視頻videohttp://file.papertrans.cn/475/474240/474240.mp4
圖書封面Titlebook: Introduction to Structurally Stable Systems of Differential Equations;  Sergei Yu. Pilyugin Book 1992 Springer Basel AG 1992 analysis on ma
描述This book is based on a one year course of lectures on structural sta- bility of differential equations which the author has given for the past several years at the Department of Mathematics and Mechanics at the University of Leningrad. The theory of structural stability has been developed intensively over the last 25 years. This theory is now a vast domain of mathematics, having close relations to the classical qualitative theory of differential equations, to differential topology, and to the analysis on manifolds. Evidently it is impossible to present a complete and detailed account of all fundamental results of the theory during a one year course. So the purpose of the course of lectures (and also the purpose of this book) was more modest. The author was going to give an introduction to the language of the theory of structural stability, to formulate its principal results, and to introduce the students (and also the readers of the book) to some of the main methods of this theory. One can select two principal aspects of modern theory of structural stability (of course there are some conventions attached to this state- ment). The first one, let us call it the "geometric" aspect, d
出版日期Book 1992
關(guān)鍵詞analysis on manifolds; differential equation; functional equation; global analysis; manifold; stability
版次1
doihttps://doi.org/10.1007/978-3-0348-8643-7
isbn_softcover978-3-0348-9712-9
isbn_ebook978-3-0348-8643-7
copyrightSpringer Basel AG 1992
The information of publication is updating

書目名稱Introduction to Structurally Stable Systems of Differential Equations影響因子(影響力)




書目名稱Introduction to Structurally Stable Systems of Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Introduction to Structurally Stable Systems of Differential Equations網(wǎng)絡(luò)公開度




書目名稱Introduction to Structurally Stable Systems of Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Structurally Stable Systems of Differential Equations被引頻次




書目名稱Introduction to Structurally Stable Systems of Differential Equations被引頻次學(xué)科排名




書目名稱Introduction to Structurally Stable Systems of Differential Equations年度引用




書目名稱Introduction to Structurally Stable Systems of Differential Equations年度引用學(xué)科排名




書目名稱Introduction to Structurally Stable Systems of Differential Equations讀者反饋




書目名稱Introduction to Structurally Stable Systems of Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:36:31 | 只看該作者
,Morse—Smale Systems,ntryagin in [1], In this work Andronov and Pontryagin considered systems on a two-dimensional sphere, . or on a disc . ? ?.; it was supposed in the latter case that trajectories intersect the boundary of . entering . as . grows.
板凳
發(fā)表于 2025-3-22 02:34:12 | 只看該作者
地板
發(fā)表于 2025-3-22 05:23:05 | 只看該作者
5#
發(fā)表于 2025-3-22 12:17:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:28:14 | 只看該作者
Spaces of Systems of Differential Equations and Diffeomorphisms,1. Let . be a domain in ?. such that:
7#
發(fā)表于 2025-3-22 20:10:12 | 只看該作者
8#
發(fā)表于 2025-3-22 22:35:04 | 只看該作者
Periodic Point and Closed Trajectory,1. Consider a diffeomorphism . : ?. → ?., and let . be a periodic point of period .. Let us begin with the case . = 1, i.e. the case of a fixed point ..
9#
發(fā)表于 2025-3-23 03:27:34 | 只看該作者
Transversality,1. Let . be smooth manifolds, let . be a submanifold of ., and let . be a smooth map, . : . → ..
10#
發(fā)表于 2025-3-23 07:54:37 | 只看該作者
,The Kupka—Smale Theorem,1. Consider an autonomous system of differential equations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 21:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广州市| 克拉玛依市| 金寨县| 夏河县| 伊宁市| 乌拉特中旗| 昭觉县| 鄂温| 鹤岗市| 西乌珠穆沁旗| 永川市| 邢台市| 渝中区| 阜城县| 从江县| 广安市| 邹城市| 大新县| 海口市| 仙游县| 廊坊市| 东城区| 平罗县| 凤翔县| 根河市| 凭祥市| 寻乌县| 沈阳市| 东安县| 扶余县| 防城港市| 申扎县| 葵青区| 常德市| 大渡口区| 精河县| 城口县| 布尔津县| 安仁县| 祁连县| 广河县|