找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Ring Theory; P. M. Cohn Textbook 2000 P.M.Cohn.FRS 2000 Group theory.SUMS.Vector space.algebra.ring theory

[復(fù)制鏈接]
查看: 13042|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:23:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Ring Theory
編輯P. M. Cohn
視頻videohttp://file.papertrans.cn/475/474137/474137.mp4
概述Paul Cohn is a well-known expositor and expert in the field.This book follows on from the SUMS book "Groups, Rings and Fields" by David Wallace.Includes supplementary material:
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: Introduction to Ring Theory;  P. M. Cohn Textbook 2000 P.M.Cohn.FRS 2000 Group theory.SUMS.Vector space.algebra.ring theory
描述Most parts of algebra have undergone great changes and advances in recent years, perhaps none more so than ring theory. In this volume, Paul Cohn provides a clear and structured introduction to the subject..After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product. Tensor product and rings of fractions, followed by a description of free rings. The reader is assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.
出版日期Textbook 2000
關(guān)鍵詞Group theory; SUMS; Vector space; algebra; ring theory
版次1
doihttps://doi.org/10.1007/978-1-4471-0475-9
isbn_softcover978-1-85233-206-8
isbn_ebook978-1-4471-0475-9Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightP.M.Cohn.FRS 2000
The information of publication is updating

書目名稱Introduction to Ring Theory影響因子(影響力)




書目名稱Introduction to Ring Theory影響因子(影響力)學(xué)科排名




書目名稱Introduction to Ring Theory網(wǎng)絡(luò)公開度




書目名稱Introduction to Ring Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Ring Theory被引頻次




書目名稱Introduction to Ring Theory被引頻次學(xué)科排名




書目名稱Introduction to Ring Theory年度引用




書目名稱Introduction to Ring Theory年度引用學(xué)科排名




書目名稱Introduction to Ring Theory讀者反饋




書目名稱Introduction to Ring Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:18:13 | 只看該作者
Introduction to Ring Theory978-1-4471-0475-9Series ISSN 1615-2085 Series E-ISSN 2197-4144
板凳
發(fā)表于 2025-3-22 01:08:08 | 只看該作者
Noetherian Rings,Throughout mathematics there are many examples of Noetherian rings, starting with the integers, and in this chapter we shall describe some of the most important classes, polynomial rings and rings of algebraic integers, as well as some of their properties, the Euclidean algorithm and unique factorization.
地板
發(fā)表于 2025-3-22 08:21:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:40:15 | 只看該作者
Linear Algebras and Artinian Rings,pendent interest. It is usually subsumed under the topic of Artinian rings, since many of the proofs carry over to this class. This chapter brings the main results of the theory, the Wedderburn theorems, and explains the role of the radical, and as an application, includes a brief introduction to group representations.
6#
發(fā)表于 2025-3-22 16:24:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:24:58 | 只看該作者
General Rings,ects of the general theory which will help the reader to understand the basic concepts. Their inclusion is justified by the fact that they are usually only found in specialist accounts but do not require extensive background knowledge.
8#
發(fā)表于 2025-3-22 23:57:41 | 只看該作者
P. M. CohnPaul Cohn is a well-known expositor and expert in the field.This book follows on from the SUMS book "Groups, Rings and Fields" by David Wallace.Includes supplementary material:
9#
發(fā)表于 2025-3-23 01:43:53 | 只看該作者
Springer Undergraduate Mathematics Serieshttp://image.papertrans.cn/i/image/474137.jpg
10#
發(fā)表于 2025-3-23 05:43:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 21:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐汇区| 沈丘县| 邹城市| 阜宁县| 台江县| 秦安县| 纳雍县| 漠河县| 抚州市| 丹寨县| 鄯善县| 涿鹿县| 乡城县| 南宫市| 霍山县| 株洲市| 宜州市| 廊坊市| 西宁市| 措勤县| 张家口市| 彰武县| 湘乡市| 防城港市| 家居| 芜湖县| 舒兰市| 珠海市| 凌云县| 武冈市| 辉县市| 南昌市| 海伦市| 临西县| 视频| 文昌市| 将乐县| 南华县| 自治县| 衡南县| 宁夏|