找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Quadratic Forms; O. T. O’Meara Book 1973Latest edition Springer-Verlag Berlin Heidelberg 1973 algebra.group theory.mathema

[復制鏈接]
樓主: Monomania
31#
發(fā)表于 2025-3-26 21:24:14 | 只看該作者
Quadratic Forms and the Orthogonal Groupok we shall combine these two subjects into the arithmetic theory of quadratic forms. Our immediate purpose is to introduce a quadratic form and an orthogonal geometry on an arbitrary finite dimensional vector space and to study certain groups of linear transformations that leave the quadratic form
32#
發(fā)表于 2025-3-27 02:08:19 | 只看該作者
33#
發(fā)表于 2025-3-27 07:26:13 | 只看該作者
The Equivalence of Quadratic Formsields. We are ready to present this part of the theory. Roughly speaking it goes as follows: the global solution is completely described by local and archimedean solutions, the local solution involves the dimension, the discriminant, and an invariant called the Hasse symbol, the complex archimedean
34#
發(fā)表于 2025-3-27 11:27:19 | 只看該作者
35#
發(fā)表于 2025-3-27 16:20:11 | 只看該作者
izes questions of power and expertise relating to education.?This encyclopaedia is a dynamic reference and study place for students, teachers, researchers and professionals in the field of education, philosophy and social sciences, offering both short and long entries on topics of theoretical and pr
36#
發(fā)表于 2025-3-27 20:17:32 | 只看該作者
37#
發(fā)表于 2025-3-27 23:24:34 | 只看該作者
O. T. O’Mearaizes questions of power and expertise relating to education.?This encyclopaedia is a dynamic reference and study place for students, teachers, researchers and professionals in the field of education, philosophy and social sciences, offering both short and long entries on topics of theoretical and pr
38#
發(fā)表于 2025-3-28 02:23:34 | 只看該作者
O. T. O’Mearaizes questions of power and expertise relating to education.?This encyclopaedia is a dynamic reference and study place for students, teachers, researchers and professionals in the field of education, philosophy and social sciences, offering both short and long entries on topics of theoretical and pr
39#
發(fā)表于 2025-3-28 08:46:39 | 只看該作者
O. T. O’Mearaizes questions of power and expertise relating to education.This encyclopaedia is a dynamic reference and study place for students, teachers, researchers and professionals in the field of education, philosophy and social sciences, offering both short and long entries on topics of theoretical and pra
40#
發(fā)表于 2025-3-28 12:35:08 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
芦溪县| 开原市| 修文县| 金塔县| 汤原县| 三亚市| 平远县| 福州市| 罗山县| 呼伦贝尔市| 中西区| 三亚市| 凉城县| 得荣县| 神农架林区| 全椒县| 绥德县| 响水县| 武胜县| 伊春市| 始兴县| 嘉义市| 宜兴市| 无棣县| 合作市| 浑源县| 茌平县| 仁化县| 铜梁县| 曲阳县| 大安市| 周宁县| 普定县| 察雅县| 桃园市| 娱乐| 乌苏市| 阜平县| 广平县| 广灵县| 广宗县|