找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Python in Earth Science Data Analysis; From Descriptive Sta Maurizio Petrelli Textbook 2021 The Editor(s) (if applicable) a

[復(fù)制鏈接]
樓主: 瘦削
31#
發(fā)表于 2025-3-27 00:36:03 | 只看該作者
Graphical Visualization of a Geological Data SetChapter 4 deals with the visualization of a geological data set using Python. It introduces the reader to the visualization of univariate data using histograms and cumulative distribution functions. Then, it begins showing how to prepare a publication-ready diagram. The chapter ends with a first attempt at visualizing multivariate data.
32#
發(fā)表于 2025-3-27 01:18:51 | 只看該作者
Descriptive Statistics 1: Univariate AnalysisMastering descriptive statistics is mandatory for a geologist. Chapter 5 shows how to describe a geological data set using Python programming, starting with basic metrics such as the location, dispersion, and degree of symmetry of a univariate data set. It then shows how to perform descriptive statistics in pandas and introduces box plot diagrams.
33#
發(fā)表于 2025-3-27 08:23:57 | 只看該作者
Error AnalysisChapter 10 is about errors and error propagation. It defines precision, accuracy, standard error, and confidence intervals. Then it demonstrates how to report uncertainties in binary diagrams. Finally, it shows two approaches to propagate the uncertainties: the linearized and Monte Carlo methods.
34#
發(fā)表于 2025-3-27 11:06:47 | 只看該作者
Introduction to Robust StatisticsChapter 11 introduces robust statistics. It presents an approach to determine whether or not a sample follows a normal distribution. Chapter 11 continues defining robust approaches for the estimation of the location and the scale of a sample. It concludes by discussing the role of robust statistics in geochemistry.
35#
發(fā)表于 2025-3-27 16:22:21 | 只看該作者
Machine LearningChapter 12 introduces the reader to the application of machine learning techniques in geology. It provides some basic concepts of machine learning and their implementation in Python, and guides the reader through a geological case study that utilizes machine learning.
36#
發(fā)表于 2025-3-27 18:48:37 | 只看該作者
Python Essentials for a Geologistdescribes how to start working with Python scripts in the Spyder Integrated Development Environment (IDE). It also explains how to perform conditional statements and loops, and how to define a function and perform basic mathematical operations.
37#
發(fā)表于 2025-3-28 00:07:09 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:18 | 只看該作者
39#
發(fā)表于 2025-3-28 07:17:28 | 只看該作者
Probability Density Functions and Their Use in Geologysity functions, and introduces meaningful probability density functions in geology. Examples are the normal and log-normal distributions. Chapter 9 ends by showing how to perform a probability density estimation.
40#
發(fā)表于 2025-3-28 12:43:11 | 只看該作者
https://doi.org/10.1007/978-3-030-78055-5Modelling Geological Data; Earth Science Python Programming; Python Learning for Geologists; Machine Le
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金堂县| 大邑县| 禹州市| 施甸县| 武山县| 武清区| 历史| 璧山县| 故城县| 平遥县| 多伦县| 蒙山县| 前郭尔| 章丘市| 峡江县| 彭水| 通河县| 新绛县| 方山县| 荆州市| 济源市| 大邑县| 平远县| 鱼台县| 江油市| 新竹市| 历史| 宁晋县| 广州市| 昌宁县| 上林县| 天峨县| 赤水市| 都兰县| 同江市| 大城县| 甘肃省| 全南县| 潮州市| 顺昌县| 文昌市|