找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Machine Learning with Security; Theory and Practice Pramod Gupta,Naresh Kumar Sehgal,John M. Acken Book 2025Latest edition

[復(fù)制鏈接]
樓主: JOLT
21#
發(fā)表于 2025-3-25 06:27:34 | 只看該作者
Cloud Computing Conceptspportunities and additional security challenges. Former is driven by automation, to offer 24?×?7 monitoring with surveillance cameras, improving industrial productivity and scalability never seen before in the human history. However, addition of edge computing and IoT also expands the attack surface
22#
發(fā)表于 2025-3-25 10:21:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:09:40 | 只看該作者
24#
發(fā)表于 2025-3-25 17:51:45 | 只看該作者
Hardware Based AI and MLy using hardware accelerators. These can be based on GPUs, FPGAs or ASIC based designs. In future, the need for AI training and inference can be combined in a single piece of hardware. This will reduce both the capital expenditure (CAPEX) and operational expenditure (OPEX) in a data-center. To summa
25#
發(fā)表于 2025-3-25 20:49:08 | 只看該作者
Hardware Based Securitys control, and corporate policies. No single solution can solve all the information security problems. This chapter will concentrate on the hardware features, capabilities and components that support information security in the Cloud.
26#
發(fā)表于 2025-3-26 03:13:55 | 只看該作者
27#
發(fā)表于 2025-3-26 07:26:09 | 只看該作者
Analytics in the Cloudractitioners working on real-life problems using Reinforcement learning. A key need is to develop the ability for enabling incremental training for neural network parameters, when the training dataset is constantly evolving. In this chapter, we will study analytics methods such as MapReduce, Hadoop
28#
發(fā)表于 2025-3-26 08:59:30 | 只看該作者
29#
發(fā)表于 2025-3-26 15:12:29 | 只看該作者
Evolution and Risks of LLMsplications for routine writing tasks, information aggregation, summarization, preparing reports, image creating and logo design etc. This chapter examines the evolution of LLMs and Generative AI with some basic examples. However, the risks in terms of LLM output manipulation should be well understoo
30#
發(fā)表于 2025-3-26 19:29:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 21:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
农安县| 淳化县| 洛阳市| 沁水县| 木兰县| 蛟河市| 嵩明县| 宾川县| 靖西县| 莱西市| 平顺县| 高要市| 曲麻莱县| 民和| 和田市| 青川县| 南阳市| 固安县| 滁州市| 南部县| 万荣县| 江阴市| 光山县| 巢湖市| 碌曲县| 咸丰县| 巴马| 本溪市| 得荣县| 湾仔区| 法库县| 浦城县| 利津县| 陆川县| 永宁县| 雷山县| 富蕴县| 中超| 油尖旺区| 罗江县| 稷山县|