找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Cyclotomic Fields; Lawrence C. Washington Textbook 1997Latest edition Springer Science+Business Media New York 1997 Calc.C

[復(fù)制鏈接]
樓主: 叛亂分子
11#
發(fā)表于 2025-3-23 10:07:33 | 只看該作者
,The Kronecker—Weber Theorem,em is usually given as an easy consequence of class field theory. We do this in the Appendix. The main point is that in an abelian extension the splitting of primes is determined by congruence conditions, and we already know that . splits in . if . and only if mod ..
12#
發(fā)表于 2025-3-23 14:42:58 | 只看該作者
13#
發(fā)表于 2025-3-23 19:22:07 | 只看該作者
14#
發(fā)表于 2025-3-23 23:20:06 | 只看該作者
Basic Results,In this chapter we prove some basic results on cyclotomic fields which will lay the groundwork for later chapters. We let ζ . denote a primitive .th root of unity. First we determine the riqng of integers and discriminant of. (ζ .). We start with the prime power case.
15#
發(fā)表于 2025-3-24 04:44:42 | 只看該作者
16#
發(fā)表于 2025-3-24 09:55:29 | 只看該作者
Dirichlet ,-series and Class Number Formulas,In this chapter we review some of the basic facts about .-series. Then their values at negative integers are given in terms of generalized Bernoulli numbers. Finally, we discuss the values at 1 and relations with class numbers.
17#
發(fā)表于 2025-3-24 12:08:50 | 只看該作者
,The Second Case of Fermat’s Last Theorem,In Chapters 1 and 6 we treated the first case of Fermat’s Last Theorem, showing that there are no solutions provided certain conditions are satisfied by the class number.
18#
發(fā)表于 2025-3-24 18:20:31 | 只看該作者
19#
發(fā)表于 2025-3-24 20:05:06 | 只看該作者
20#
發(fā)表于 2025-3-25 02:44:14 | 只看該作者
Introduction to Cyclotomic Fields978-1-4612-1934-7Series ISSN 0072-5285 Series E-ISSN 2197-5612
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西峡县| 兰考县| 瑞丽市| 冀州市| 宁乡县| 长兴县| 英吉沙县| 津市市| 桂阳县| 钟山县| 罗定市| 当雄县| 铜梁县| 明溪县| 如皋市| 威宁| 左贡县| 西平县| 五莲县| 库伦旗| 英吉沙县| 博爱县| 嘉荫县| 榆社县| 醴陵市| 永川市| 汤原县| 徐闻县| 冀州市| 阳泉市| 南充市| 静海县| 罗源县| 松潘县| 英超| 临沂市| 平度市| 江门市| 滕州市| 星子县| 泸西县|