找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Complex Hyperbolic Spaces; Serge Lang Book 1987 Springer Science+Business Media New York 1987 Diophantine approximation.Fi

[復(fù)制鏈接]
查看: 33363|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:48:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Complex Hyperbolic Spaces
編輯Serge Lang
視頻videohttp://file.papertrans.cn/474/473539/473539.mp4
圖書封面Titlebook: Introduction to Complex Hyperbolic Spaces;  Serge Lang Book 1987 Springer Science+Business Media New York 1987 Diophantine approximation.Fi
描述Since the appearance of Kobayashi‘s book, there have been several re- sults at the basic level of hyperbolic spaces, for instance Brody‘s theorem, and results of Green, Kiernan, Kobayashi, Noguchi, etc. which make it worthwhile to have a systematic exposition. Although of necessity I re- produce some theorems from Kobayashi, I take a different direction, with different applications in mind, so the present book does not super- sede Kobayashi‘s. My interest in these matters stems from their relations with diophan- tine geometry. Indeed, if X is a projective variety over the complex numbers, then I conjecture that X is hyperbolic if and only if X has only a finite number of rational points in every finitely generated field over the rational numbers. There are also a number of subsidiary conjectures related to this one. These conjectures are qualitative. Vojta has made quantitative conjectures by relating the Second Main Theorem of Nevan- linna theory to the theory of heights, and he has conjectured bounds on heights stemming from inequalities having to do with diophantine approximations and implying both classical and modern conjectures. Noguchi has looked at the function field case a
出版日期Book 1987
關(guān)鍵詞Diophantine approximation; Finite; Nevanlinna theory; approximation; boundary element method; complex num
版次1
doihttps://doi.org/10.1007/978-1-4757-1945-1
isbn_softcover978-1-4419-3082-8
isbn_ebook978-1-4757-1945-1
copyrightSpringer Science+Business Media New York 1987
The information of publication is updating

書目名稱Introduction to Complex Hyperbolic Spaces影響因子(影響力)




書目名稱Introduction to Complex Hyperbolic Spaces影響因子(影響力)學(xué)科排名




書目名稱Introduction to Complex Hyperbolic Spaces網(wǎng)絡(luò)公開度




書目名稱Introduction to Complex Hyperbolic Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Complex Hyperbolic Spaces被引頻次




書目名稱Introduction to Complex Hyperbolic Spaces被引頻次學(xué)科排名




書目名稱Introduction to Complex Hyperbolic Spaces年度引用




書目名稱Introduction to Complex Hyperbolic Spaces年度引用學(xué)科排名




書目名稱Introduction to Complex Hyperbolic Spaces讀者反饋




書目名稱Introduction to Complex Hyperbolic Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:42:46 | 只看該作者
Basic Properties,rem for families of such maps. Such an application has wide ramifications, including possible applications to problems associated with Mordell’s conjecture (Faltings’ theorem) and possible generalizations.
地板
發(fā)表于 2025-3-22 06:42:56 | 只看該作者
5#
發(fā)表于 2025-3-22 11:07:22 | 只看該作者
https://doi.org/10.1007/978-1-4757-1945-1Diophantine approximation; Finite; Nevanlinna theory; approximation; boundary element method; complex num
6#
發(fā)表于 2025-3-22 14:56:48 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:15 | 只看該作者
Hyperbolic Imbeddings,This chapter and the next chapter on Brody’s theorem are essentially logically independent. The reader interested in Brody’s theorem should skip this chapter at first, and come back to it only as needed to get the extra information that under certain circumstances imbeddings are hyperbolic.
8#
發(fā)表于 2025-3-22 23:28:34 | 只看該作者
9#
發(fā)表于 2025-3-23 01:30:22 | 只看該作者
Nevanlinna Theory,In classical estimates of orders of growth of an entire function, one uses the measure of growth given by
10#
發(fā)表于 2025-3-23 08:09:09 | 只看該作者
Applications to Holomorphic Curves in ,,,In this chapter we start with Borel’s theorem of 1897, concerning linear relations between entire functions without zeros. Its proof depends only on a very easy and brief application of Jensen’s formula via Lemmas 3.2 and 3.7, and could consequently be done in standard basic courses in complex variables.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 阿鲁科尔沁旗| 长海县| 武威市| 曲沃县| 罗甸县| 教育| 宜州市| 平湖市| 华蓥市| 阿拉善盟| 迭部县| 沅江市| 双鸭山市| 固安县| 桓台县| 山东省| 泸水县| 泗洪县| 衡阳市| 澄迈县| 泽库县| 镇坪县| 同仁县| 永昌县| 兴和县| 舒城县| 伊宁市| 汾西县| 宿松县| 桐城市| 合肥市| 泰和县| 万盛区| 沅陵县| 增城市| 民县| 咸丰县| 罗甸县| 原阳县| 临朐县|