找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Complex Analytic Geometry; Stanis?aw ?ojasiewicz Book 1991 Springer Basel AG 1991 Factor.Finite.Microsoft Access.algebra.a

[復制鏈接]
樓主: 小故障
21#
發(fā)表于 2025-3-25 04:03:04 | 只看該作者
22#
發(fā)表于 2025-3-25 09:13:17 | 只看該作者
c boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.
23#
發(fā)表于 2025-3-25 14:59:35 | 只看該作者
24#
發(fā)表于 2025-3-25 19:10:27 | 只看該作者
25#
發(fā)表于 2025-3-25 23:53:31 | 只看該作者
Book 1991nt Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom- position into irreducible branches (§
26#
發(fā)表于 2025-3-26 01:34:54 | 只看該作者
he important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom- position into irreducible branches (§978-3-0348-7619-3978-3-0348-7617-9
27#
發(fā)表于 2025-3-26 07:55:15 | 只看該作者
Stanis?aw ?ojasiewiczaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical an978-3-540-50169-5978-3-540-45942-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
28#
發(fā)表于 2025-3-26 09:52:10 | 只看該作者
29#
發(fā)表于 2025-3-26 13:07:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:08:25 | 只看該作者
Stanis?aw ?ojasiewiczaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical an978-3-540-50169-5978-3-540-45942-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-6 02:45
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
洞口县| 余干县| 敦化市| 乌兰浩特市| 东方市| 静乐县| 海宁市| 八宿县| 虞城县| 奉贤区| 寿光市| 和田市| 池州市| 闽侯县| 仙桃市| 邹城市| 聂拉木县| 萨嘎县| 吉水县| 股票| 青岛市| 武汉市| 酉阳| 杭州市| 刚察县| 讷河市| 武胜县| 辽阳市| 龙门县| 讷河市| 洮南市| 巴东县| 禹州市| 崇信县| 德令哈市| 阜宁县| 莲花县| 东乡县| 敦化市| 宝山区| 建湖县|