找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Applications of Modular Forms; Computational Aspect Zafer Selcuk Aygin Book 2023 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
樓主: Iodine
11#
發(fā)表于 2025-3-23 12:21:20 | 只看該作者
Introduction to Applications of Modular Forms978-3-031-32629-5Series ISSN 1938-1743 Series E-ISSN 1938-1751
12#
發(fā)表于 2025-3-23 15:55:57 | 只看該作者
https://doi.org/10.1007/978-3-031-32629-5Modular Forms; q-series; Eisenstein Series; Dedekind eta Function; Partitions; Quadratic Forms; Siegel’s F
13#
發(fā)表于 2025-3-23 21:34:50 | 只看該作者
Dirichlet Characters,In this chapter we introduce the preliminary tools. These include Dirichlet characters, Gauss sums, Dirichlet .-functions and Bernoulli numbers.
14#
發(fā)表于 2025-3-23 22:11:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:08:46 | 只看該作者
Book 2023theory of modular forms and its applications in number theoretic problems such as representations by quadratic forms and the determination of asymptotic formulas for Fourier coefficients of different types of special functions. A detailed account of recent applications of modular forms in number the
16#
發(fā)表于 2025-3-24 09:22:52 | 只看該作者
17#
發(fā)表于 2025-3-24 13:30:49 | 只看該作者
Book 2023ic formulas for Fourier coefficients of different types of special functions. A detailed account of recent applications of modular forms in number theory with a focus on using computer algorithms is provided. Computer algorithms are included for each presented application to help readers put the theory in context and make new conjectures.??.
18#
發(fā)表于 2025-3-24 16:42:34 | 只看該作者
19#
發(fā)表于 2025-3-24 20:22:30 | 只看該作者
Various Applications,oduce the idea of using eta quotients together with the character analog of Dedekind’s eta function to produce cusp forms. In the final section, we use the Modularity Theorem to give an application of modular forms on elliptic curves.
20#
發(fā)表于 2025-3-24 23:14:10 | 只看該作者
dbreaking branch of contemporary ethics because of its environmentally embedded and embodied conception of human beings. For a change towards a more sustainable culture to take place it is however not enough that our understanding of our place in the environment becomes more ecocentric and to realiz
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 14:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰察布市| 北海市| 科技| 富源县| 集安市| 磴口县| 宁都县| 青河县| 微山县| 安达市| 永春县| 牙克石市| 婺源县| 颍上县| 如皋市| 桑日县| 通许县| 收藏| 武山县| 宜宾县| 莆田市| 高邮市| 昌都县| 富裕县| 垫江县| 大庆市| 隆安县| 昌宁县| 班戈县| 措勤县| 西藏| 深州市| 五家渠市| 都昌县| 马尔康县| 阿巴嘎旗| 唐山市| 永安市| 阜南县| 莒南县| 明水县|