找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Affine Group Schemes; William C. Waterhouse Textbook 1979 Springer-Verlag New York Inc. 1979 Abelian group.Algebra.Algebra

[復(fù)制鏈接]
樓主: Concave
31#
發(fā)表于 2025-3-26 21:37:39 | 只看該作者
32#
發(fā)表于 2025-3-27 01:23:56 | 只看該作者
33#
發(fā)表于 2025-3-27 07:50:51 | 只看該作者
Faithful Flatnessthen . ?. . → . ?. . is also an injection. For example, any localization . →. . is flat. Indeed, an element .?. in .?. .= . . is zero iff . = 0 for some . in .; if . injects into . and . is zero in ., it is zero in .. What we really want, however, is a condition stronger than flatness and not satisfied by localizations.
34#
發(fā)表于 2025-3-27 10:58:31 | 只看該作者
Affine Group Schemesa familiar process for constructing a group from a ring. Another such process is GL., where GL.(.) is the group of all 2 × 2 matrices with invertible determinant. Similarly we can form SL. and GL.. In particular there is GL., denoted by the special symbol G.; this is the ., with G.(.) the set of inv
35#
發(fā)表于 2025-3-27 14:57:50 | 只看該作者
36#
發(fā)表于 2025-3-27 19:59:28 | 只看該作者
Representationsl come up later for general ., but the only case of interest now is . = .? ., where . is a fixed .-module. If the action of . here is also .-linear, we say we have a . of . on .. The functor . = Aut.(. ?.) is a group functor; a linear representation of . on . clearly assigns an automorphism to each
37#
發(fā)表于 2025-3-28 01:34:25 | 只看該作者
Algebraic Matrix Groupser only a fixed field .. We call a subset S of . if it is the set of common zeros of some polynomials {.} in .[.,…,.]. Clearly an intersection of closcd sets is closed. Also, if S is the zeros of {.} and . the zeros of {.}} then . ∪ . is the zeros of {. .}, so finite unions of closed sets are closed
38#
發(fā)表于 2025-3-28 02:44:59 | 只看該作者
39#
發(fā)表于 2025-3-28 06:47:10 | 只看該作者
Connected Components and Separable Algebrasted by . = .[.]/(. ? 1). Over the reals there are two points in Spec ., reflecting the decomposition . ? 1 = (. – 1)(. + . + 1). But over the complex numbers the group is isomorphic to ?/3?, and we get three components. Thus base extension can create additional idempotents. To have a complete theory
40#
發(fā)表于 2025-3-28 12:06:28 | 只看該作者
Groups of Multiplicative Types. One calls an . × . matrix . . if the subalgebra .[.] of End(.) is separable. We have of course .[.] ? .[.]/.(.) where .(.) is the minimal polynomial of . Separability then holds iff .[.]?. = .[.] ? .[.]/.(.) is separable over .. This means that . has no repeated roots over ., which is the familia
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍邱县| 竹山县| 霍邱县| 青阳县| 迁西县| 农安县| 宁陕县| 淮北市| 客服| 聊城市| 来凤县| 栾城县| 台前县| 调兵山市| 万源市| 云浮市| 台北县| 体育| 项城市| 宣武区| 墨江| 宜丰县| 博罗县| 策勒县| 红桥区| 枣阳市| 凤城市| 宁波市| 宝清县| 阿巴嘎旗| 吉水县| 吉安县| 宁海县| 栖霞市| 大邑县| 铁力市| 凤庆县| 玛曲县| 望谟县| 莎车县| 伊金霍洛旗|