找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data ; 6th Joint Internatio M. Jorge Cardoso

[復(fù)制鏈接]
樓主: counterfeit
21#
發(fā)表于 2025-3-25 05:22:58 | 只看該作者
Joseph G. Jacobs,Gabriel J. Brostow,Alex Freeman,Daniel C. Alexander,Eleftheria Panagiotaki. Equations and figurers quantify the phenomena being described and provide the reader with the tools to tradeoff various performance features. The discussions 978-3-031-00406-3978-3-031-01534-2Series ISSN 1932-6076 Series E-ISSN 1932-6084
22#
發(fā)表于 2025-3-25 08:19:03 | 只看該作者
Alison Q. O’Neil,John T. Murchison,Edwin J. R. van Beek,Keith A. Goatman. Equations and figurers quantify the phenomena being described and provide the reader with the tools to tradeoff various performance features. The discussions 978-3-031-00406-3978-3-031-01534-2Series ISSN 1932-6076 Series E-ISSN 1932-6084
23#
發(fā)表于 2025-3-25 14:44:59 | 只看該作者
0302-9743 and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2017, and the Second International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2017, held in conjunction with the 20th International Conference on Medical Imaging and C
24#
發(fā)表于 2025-3-25 19:22:32 | 只看該作者
25#
發(fā)表于 2025-3-25 22:54:16 | 只看該作者
26#
發(fā)表于 2025-3-26 03:33:52 | 只看該作者
DCNN-Based Automatic Segmentation and Quantification of Aortic Thrombus Volume: Influence of the Trabus volume assessment, starting from its segmentation based on a Deep Convolutional Neural Network (DCNN) both pre-operatively and post-operatively. The aim is to investigate several training approaches to evaluate their influence in the thrombus volume characterization.
27#
發(fā)表于 2025-3-26 06:12:40 | 只看該作者
Expected Exponential Loss for Gaze-Based Video and Volume Ground Truth Annotationmi-supervised setting using a novel Expected Exponential loss function. We show that our framework provides superior performances on a wide range of medical image settings compared to existing strategies and that our method can be combined with current crowd-sourcing paradigms as well.
28#
發(fā)表于 2025-3-26 10:56:11 | 只看該作者
29#
發(fā)表于 2025-3-26 15:51:09 | 只看該作者
30#
發(fā)表于 2025-3-26 20:08:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 14:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射洪县| 炉霍县| 平利县| 洮南市| 偏关县| 于都县| 乌兰察布市| 苏尼特左旗| 越西县| 麟游县| 荔浦县| 华安县| 商洛市| 敦化市| 蒙山县| 九龙坡区| 修水县| 大理市| 楚雄市| 隆昌县| 南乐县| 古田县| 滨州市| 永平县| 南江县| 自贡市| 兴义市| 秦皇岛市| 阳曲县| 宁德市| 永顺县| 茌平县| 玛沁县| 泗阳县| 铜陵市| 江川县| 镇坪县| 酒泉市| 山阴县| 黄骅市| 天镇县|