找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intersections of Hirzebruch–Zagier Divisors and CM Cycles; Benjamin Howard,Tonghai Yang Book 2012 Springer-Verlag Berlin Heidelberg 2012 1

[復(fù)制鏈接]
查看: 47747|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:07:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles
編輯Benjamin Howard,Tonghai Yang
視頻videohttp://file.papertrans.cn/473/472863/472863.mp4
概述Develops new methods in explicit arithmetic intersection theory.Develops new techniques for the study of Shimura varieties and automorphic forms, central objects in modern number theory.Proves new cas
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Intersections of Hirzebruch–Zagier Divisors and CM Cycles;  Benjamin Howard,Tonghai Yang Book 2012 Springer-Verlag Berlin Heidelberg 2012 1
描述This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.
出版日期Book 2012
關(guān)鍵詞11-XX; Arakelov geometry; Hilbert modular surfaces; arithmetic intersection theory; automorphic forms
版次1
doihttps://doi.org/10.1007/978-3-642-23979-3
isbn_softcover978-3-642-23978-6
isbn_ebook978-3-642-23979-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles影響因子(影響力)




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles影響因子(影響力)學(xué)科排名




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles網(wǎng)絡(luò)公開度




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles被引頻次




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles被引頻次學(xué)科排名




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles年度引用




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles年度引用學(xué)科排名




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles讀者反饋




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:31 | 只看該作者
0075-8434 formation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.978-3-642-23978-6978-3-642-23979-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 01:19:09 | 只看該作者
0075-8434 orms, central objects in modern number theory.Proves new casThis monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal an
地板
發(fā)表于 2025-3-22 07:02:51 | 只看該作者
Book 2012ltiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.
5#
發(fā)表于 2025-3-22 12:05:26 | 只看該作者
Book 2012t the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex mu
6#
發(fā)表于 2025-3-22 13:25:36 | 只看該作者
7#
發(fā)表于 2025-3-22 19:23:36 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/i/image/472863.jpg
8#
發(fā)表于 2025-3-23 00:46:09 | 只看該作者
978-3-642-23978-6Springer-Verlag Berlin Heidelberg 2012
9#
發(fā)表于 2025-3-23 04:25:58 | 只看該作者
10#
發(fā)表于 2025-3-23 08:21:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 14:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青河县| 白城市| 沙河市| 沁阳市| 定远县| 扎赉特旗| 西畴县| 靖江市| 闽侯县| 静乐县| 陵水| 朝阳区| 伊金霍洛旗| 三原县| 平湖市| 临漳县| 轮台县| 远安县| 南投市| 周口市| 新郑市| 隆化县| 新密市| 涞源县| 昌江| 遵化市| 赫章县| 神木县| 静海县| 栾川县| 安康市| 苍山县| 蒙山县| 蓝山县| 通江县| 峨边| 肇东市| 西和县| 逊克县| 井研县| 繁昌县|