找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interplay of Quantum Mechanics and Nonlinearity; Understanding Small- V. M. (Nitant) Kenkre Book 2022 The Editor(s) (if applicable) and The

[復制鏈接]
樓主: APL
11#
發(fā)表于 2025-3-23 11:54:00 | 只看該作者
Initial Delocalization, Phase-Nonlinearity Interplay, and Fluorescence Depolarization,d to occur at . values of the nonlinearity relative to the localized case. As the nonlinearity increased beyond that for self-trapping, another transition occurred at which the initial placement was completely undisturbed with the passage of time. The cause was the coincidence of the initial state w
12#
發(fā)表于 2025-3-23 16:34:15 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:15 | 只看該作者
Static Energy Mismatch in the Nonlinear Dimer: Nondegeneracy,r in which its derivative blows up. Visual displays of the period confirmed critical behavior and clarified how the self-trapping transition ceases to be for negative mismatch beyond a certain point. Stationary state considerations were presented along the lines of the development in Chap. . but enr
14#
發(fā)表于 2025-3-23 22:54:50 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:10:32 | 只看該作者
17#
發(fā)表于 2025-3-24 11:47:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:53 | 只看該作者
Bose-Einstein Condensate Tunneling: The Gross-Pitaevskii Equation,ic energy mismatch can be manipulated to make the self-trapping and the amplitude transitions coincide with each other; and how critical points and critical lines move in parameter space as one changes the initial distribution between the traps. The validity of the Gross-Pitaevskii equation relative
19#
發(fā)表于 2025-3-24 20:31:10 | 只看該作者
20#
發(fā)表于 2025-3-24 23:10:58 | 只看該作者
Book 2022 permit analytic solutions. In many quantum systems of contemporary interest, the DNLSE arises as a result of approximate descriptions despite the fundamental linearity of quantum mechanics. Such scenarios, exemplified by polaron physics and Bose-Einstein condensation, provide application areas for
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-6 17:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿拉善左旗| 高雄市| 库尔勒市| 和政县| 遂川县| 中西区| 安化县| 灵川县| 鲁山县| 抚州市| 铜川市| 儋州市| 西峡县| 兴隆县| 济南市| 涞水县| 雷山县| 延寿县| 红桥区| 新和县| 莱芜市| 贺兰县| 友谊县| 枞阳县| 垫江县| 龙胜| 夏河县| 高台县| 龙游县| 青川县| 靖州| 隆子县| 苏州市| 运城市| 江北区| 盘锦市| 沅陵县| 庄浪县| 陆良县| 玛沁县| 松潘县|